Контакты

Разработка урока и презентация на тему "кодирование текстовой информации". Открытый урок по информатике и икт на тему "кодирование текстовой информации" Конспект урока двоичное кодирование текстовой информации

Конспект урока по информатике и ИКТ 8 класс

Тема урока: Кодирование текстовой информации

Тип урока : изучение нового материала и первичное закрепление.

Цели урока:

Познакомить учащихся со способами кодирования информации в компьютере;

Рассмотреть примеры решения задач;

Способствовать развитию познавательных интересов учащихся.

Воспитывать выдержку и терпение в работе, чувства товарищества и взаимопонимания.

Задачи урока:

Формировать знания учащихся по теме “Кодирование текстовой (символьной) информации”;

Содействовать формированию у школьников образного мышления;

Развить навыки анализа и самоанализа;

Формировать умения планировать свою деятельность.

Оборудование:

рабочие места учеников (персональный компьютер),

рабочее место учителя,

интерактивная доска,

мультимедийный проектор,

мультимедийная презентация,

Структура урока

Список используемой литературы:

1. Информатика и ИКТ. Базовый курс. Учебник для 8 класса. /Н.Д. Угринович. – М. БИНОМ. Лаборатория знаний, 20010.

2. Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений/Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – 3-е изд. – М. БИНОМ. Лаборатория знаний, 2010.

3. Словарь русских пословиц и поговорок. – М.: Терра, 1997

4. Простейшие методы шифрования текста/ Д.М. Златопольский. – М.: Чистые пруды, 2007

5. Тексты демонстрационных тестов по информатике в форме и по материалам ЕГЭ 2009-2011 г.г.

Ход урока

Организационный момент.

На интерактивной доске первый слайд мультимедийной презентации с темой урока.

Учитель: Здравствуйте, ребята. Садитесь. Дежурный, доложите об отсутствующих. (Доклад дежурного). Спасибо.

II. Работа над темой урока.

1. Объяснение нового материала .

Объяснение нового материала проходит в форме эвристической беседы с одновременным показом мультимедийной презентации на интерактивной доске (Приложение 1).

Учитель : При изучении темы «Информация и информационные процессы» мы с вами говорили, что в процессах восприятия, передачи и хранения информации живыми организмами, человека и техническими устройствами происходит её кодирование с помощью знаковой системы. Вспомните, что является результатом кодирования информации?

Ответ: Результатом кодирования является последовательность символов данной знаковой системы.

Учитель: Приведите примеры кодов.

Ответ: Последовательность букв в тексте, цифр в числе, генетический код, двоичный компьютерный код и т.д.

Учитель: Сегодня на уроке мы познакомимся со способами кодирования текстовой информации в компьютере. Запишите тему урока “Кодирование текстовой информации” (слайд 1). На уроке рассмотрим следующие вопросы (слайд 2):

Исторический экскурс;

Двоичное кодирование текстовой информации;

Расчет количества текстовой информации.

Исторический экскурс

Человечество использует шифрование (кодировку) текста с того самого момента, когда появилась первая секретная информация. Перед вами несколько приёмов кодирования текста, которые были изобретены на различных этапах развития человеческой мысли (слайд 3):

Криптография – это тайнопись, система изменения письма с целью сделать текст непонятным для непосвященных лиц;

Азбука Морзе или неравномерный телеграфный код, в котором каждая буква или знак представлены своей комбинацией коротких элементарных посылок электрического тока (точек) и элементарных посылок утроенной продолжительности (тире);

Сурдожесты – язык жестов, используемый людьми с нарушениями слуха.

Вопрос: Какие примеры кодирования текстовой информации можно привести еще?

Учащиеся приводят примеры .

Учитель: (Показ слайда 4). Один из самых первых известных методов шифрования носит имя римского императора Юлия Цезаря (I век до н.э.). Этот метод основан на замене каждой буквы шифруемого текста, на другую, путем смещения в алфавите от исходной буквы на фиксированное количество символов, причем алфавит читается по кругу, то есть после буквы я рассматривается а. Так слово байт при смещении на два символа вправо кодируется словом гвлф. Обратный процесс расшифровки данного слова – необходимо заменять каждую зашифрованную букву, на вторую слева от неё.

(Показ слайда 5) Расшифруйте фразу персидского поэта Джалаледдина Руми “кгнусм ёогкг фесл тцфхя фзужщз фхгрзх ёогксп”, закодированную с помощью шифра Цезаря. Известно, что каждая буква исходного текста заменяется третьей после нее буквой. В качестве опоры используйте буквы русского алфавита, расположенные на слайде.

Вопрос: Что у вас получилось?

Ответ: Закрой глаза свои пусть сердце станет глазом.

Учитель: Молодцы! Правильно справились с заданием.

Ответ сравнивается с появившемся на 5слайде правильным ответом.

Двоичное кодирование текстовой информации

Учитель: В каком из перечисленных приёмов кодирования используется двоичный принцип кодирования информации?

Ответ: В азбуке Морзе.

Учитель: В компьютере также используют принцип двоичного кодирования информации. Только вместо точки и тире используют 0 и 1 (слайд 6). Традиционно для кодирования одного символа используется 1 байт информации. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определённая последовательность из восьми электрических импульсов (0-нет сигнала, 1-есть сигнал). Это двоичный код знака, который хранится в оперативной памяти компьютера, где занимает одну ячейку. В процессе вывода знака на экран компьютера производится обратное перекодирование.

Вопрос: Какое количество различных символов можно закодировать?

Ответ: N = 2 I = 2 8 = 256.

Учитель: Верно. Достаточно ли этого для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры и другие символы?

Дети подсчитывают количество различных символов:

33 строчные буквы русского алфавита + 33 прописные буквы = 66;

Для английского алфавита 26 + 26 = 52;

Цифры от 0 до 9 и т.д.

Учитель: Ваш вывод?

В ывод учащихся: Получается, что нужно 127 символов. Остается еще 129 значений, которые можно использовать для обозначения знаков препинания, арифметических знаков, служебных операций (перевод строки, пробел и т.д.. Следовательно, одного байта вполне хватает, чтобы закодировать необходимые символы для кодирования текстовой информации.

Учитель : В компьютере каждый символ кодируется уникальным кодом.

Принято интернациональное соглашение о присвоении каждому символу своего уникального кода. В качестве международного стандарта принята кодовая таблица ASCII (American Standard Code for Information Interchange) (слайд 7).

В этой таблице представлены коды от 0 до 127 (буквы английского алфавита, знаки математических операций, служебные с имволы и т.д.), причем коды от 0 до 32 отведены не символам, а функциональным клавишам. Запишите название этой кодовой таблицы и диапазон кодируемых символов.

Коды с 128 по 255 выделены для национальных стандартов каждой страны. Этого достаточно для большинства развитых стран.

Для России были введены несколько различных стандартов кодовой таблицы (коды с 128 по 255).

Вот некоторые из них (слайд 8-9). Рассмотрим и запишем их названия:

КОИ8-Р, СР1251, СР866, Мас, ISO.

Откройте практикум по информатике на стр. 65-66 и прочитайте про эти кодировочные таблицы.

Учитель: задает вопросы по прочитанному материалу:

Какой стандарт был применён первым для кодировки русскоязычных букв?

Какой стандарт кодировки наиболее распространен в настоящее время?

Что означает сочетание букв “СР” в кодировках СР1251, СР866?

Ученики отвечают на поставленные вопросы.

Учитель : В текстовом редакторе MS Word чтобы вывести на экране символ по его номеру кода, необходимо удерживая на клавиатуре клавишу “ALT” набрать код символа на дополнительной цифровой клавиатуре.

Запустите текстовый редактор MS Word. Удерживая клавишу “ALT”, наберите коды на дополнительной цифровой клавиатуре (слайд 10):

Какое слово получили?

Ответ: бит.

Учитель: Закройте файл без сохранения.

Понятие кодировки Unicode.

(слайд 11) В мире существует примерно 6800 различных языков. Если прочитать текст, напечатанный в Японии на компьютере в России или США, то понять его будет нельзя. Чтобы буквы любой страны можно было читать на любом компьютере, для их кодировки стали использовать два байта (16 бит). Это международный стандарт кодирования текстовых символов Unicode .

Вопрос: Сколько символов можно закодировать двумя байтами? (Для слабоуспевающих учащихся можно предложить им воспользоваться инженерным калькулятором).

Ответ :N= 2 I =2 16 = 65536/

Такая кодировка называется Unicode и обозначается как UCS-2. Этот код включает в себя все существующие алфавиты мира, а также множество математических, музыкальных, химических символов и многое другое. Существует кодировка и UCS-4, где для кодирования используют 4 байта, то есть можно кодировать более 4 млрд. символов.

Расчет количества текстовой информации

Так как каждый символ кодируется 1 байтом, то информационный объем текста можно узнать, умножив количество символов в тексте на 1 байт.

Проверим это на практике. Включите монитор, создайте текстовый документ в редакторе Блокнот и напечатайте в нём пословицу (слайд 12): “Ученье – атаман, а неученье – комар”. Сколько в ней символов?

Ответ: 36

Учитель : Сохраните и закройте файл. Определите его объем в байтах. Каков он?

Ответ: 36 байт.

Учитель : Ваш вывод?

Ученики обсуждают и делают выводы.

Физкультминутка: Ребята, сейчас сделаем упражнения для улучшения мозгового кровообращения: 1) Сидя, руки на поясе. Раз - махом левую руку занести через правое плечо, голову повернуть налево. Два- исходное положение. Три, четыре – то же правой рукой. Повторим 5 раз. Темп замедленный.

2) Сидя на стулу. Раз – голову наклонить вправо. Два – исходное положение. Три – голову наклонить влево. Четыре – исходное положение Повторим 5 раз. Теми средний.

А теперь с новыми силами, отдохнувшие приступим ко второй части нашей темы: разбор и решение задач.

2. Разбор и решение задач

Переход с режима просмотра презентации на интерактивный режим доски.

Учитель (работа у доски): Рассмотрим пример кодировки текста в различных кодировочных таблицах. Откройте стр. 66 практикума по информатике и информационным технологиям. В качестве справочного материала будем использовать представленные на рис. 2.4 и 2.5 таблицы кодировок КОИ8-Р и CP1251. (На интерактивной доске размещаются при помощи галереи рисунков и фото изображения этих же таблиц кодировок). Закодируем слово “Рим” (Приложение 1 )

СР1251: 208 232 236

КОИ8-Р:242 201 205

Переведем с помощью инженерного калькулятора последовательности кодов из десятичной системы счисления в шестнадцатеричную. Получим:

СР1251: D0 E8 EC

КОИ8-Р: F2 C9 CD

(Переход на режим просмотра презентации).

Работа в парах. (Класс делится на пары).

Учитель: Закодируем при помощи этих же таблиц кодировки слова, предложенные вам на карточках.

Прочитайте внимательно задание на слайде (слайд 13).

Задание: Все понятия употребляются в информатике или связаны с ней. Определите эти понятия и закодируйте их при помощи таблиц КОИ8-Р или CP1251. Переведите с помощью инженерного калькулятора последовательности кодов из десятичной системы счисления в шестнадцатеричную. Занесите полученный шестнадцатеричный код без пробелов в соответствующее Поле ввода. Нажмите кнопку. Проверьте и убедитесь в правильности решения. Понятия записывать заглавными буквами, кроме географических названий.

Карточка 1 . Каким понятиям соответствуют приведенные ниже комментарии?

1. И в дневнике ученика, и в таблице базы данных.

2. И медицинская, и в компьютерной программе.

Карточка 2 . Перечисленные географические названия используются в понятиях, употребляемых в информатике, или связаны с ними.

1. Государство, столица которого Каир

2. Город в Узбекистане, с названием которого связано понятие “алгоритм”.

Карточка 3 . Термины, соответствующие определениям, употребляются также в контексте устройства и работы автомобиля.

1. Часть двигателя внутреннего сгорания

2. Устройство в автомобиле для очистки топлива

Ответы

2. процедура

3. Египет (египетский треугольник), Хорезм (алгоритм от фамилии среднеазиатского математика аль-Хорезми)

4. цилиндр (совокупность дорожек с одинаковым номером на магнитных дисках)

фильтр (условие, по которому производится отбор записей в базе банных)

Коды

Запись СР1251: 231 224 239 232 241 252 E7 E0 EF E8 F1 FC

Египет СР1251: 197 227 232 239 229 242 C5 E3 E8 EF E5 F2

Цилиндр СР1251: 246 232 235 232 237 228240 F 6E 8EB E 8ED E 4F 0

Процедура КОИ8-Р:208 210 207 195 197 196 213 210 193

D0 D2 СF C3 C5 C4 D5 D2 C1

Хорезм КОИ8-Р:232 207 210 197 218 205 E8 CF D2 C5 DA CD

Фильтр КОИ8-Р: 198 201 204 216 212 210 C6 C9 CC D8 D4 D2

Учащиеся открывают карточки согласно номеру, названному учителем для каждой пары учащихся.

Учитель: Назовите задуманные термины или понятия. Кто получил правильный код? У кого не получилось? В чем ваша ошибка, как вы считаете?

Учащиеся отвечают на вопросы в форме обсуждения.

(Переход на интерактивный режим работы доски).

Учитель: Теперь переходим к решению задач на количество текстовой информации и величин, связанных с определением количества текстовой информации.

Запишите условиезадачи № 1 .(На интерактивной доске – условие задачи № 1.) Считая, что каждый символ кодируется одним байтом, оцените информационный объем следующего предложения:

“Мой дядя самых честных правил, Когда не в шутку занемог, Он уважать себя заставил И лучше выдумать не мог.” (Приложение 2 )

Решение: В данной фразе 108 символов, учитывая знаки препинания, кавычки и пробелы. Умножаем это количество на 8 бит. Получаем 108*8=864 бита. Есть ли вопросы по решению?

Учитель отвечает на вопросы или один ученик отвечает на вопрос другого.

Учитель: Рассмотрим задачу № 2 . (Условие выводится на интерактивной доске). Запишите её условие: Лазерный принтер Canon LBP печатает со скоростью в среднем 6,3 Кбит в секунду. Сколько времени понадобится для распечатки 8-ми страничного документа, если известно, что на одной странице в среднем по 45 строк, в строке 70 символов (1 символ – 1 байт).

Решение:

1) Находим количество информации, содержащейся на 1 странице:

45 * 70 * 8 бит = 25200 бит

2) Находим количество информации на 8 страницах:

25200 * 8 = 201600 бит

3) Приводим к единым единицам измерения. Для этого Мбиты переводим в биты:

6,3*1024=6451,2 бит/сек.

4) Находим время печати: 201600: 6451,2 ? 31 секунда.

(Приложение 3 )

Ваши вопросы.

Учащиеся задают вопросы, если они возникают.

Учитель сначала просит ответить на вопрос другого ученика, если ответа нет, то отвечает сам.

Учитель: Самостоятельно решим электронные задачи. Для этого откройте в папке «Информатика» папку «Задачи 8 класс» - «Кодирование» Компьютер оценит ваши ответы и даст правильный ответ.

Задача 1. Считая, что каждый символ кодируется двумя байтами, оцените информационный объем следующего предложения в кодировке Unicode:

Один пуд – около 16,4 килограмм

Впишите сюда ответ:_________

Задача 2. За 45 секунд был распечатан текст. Подсчитать количество страниц в тексте, если известно, что в среднем на странице 50 строк по 75 символов в каждой, скорость печати лазерного принтера 8 Кбит/сек., 1 символ - 1 байт. Ответ округлить до целой части.

Впишите сюда ответ:__________

Переход на презентацию.

III. Обобщение

Вопросы учителя (слайд 14):

1. Какой принцип кодирования текстовой информации используется в компьютере?

2. Как называется международная таблица кодировки символов?

3. Перечислите названия таблиц кодировок для русскоязычных символов.

4. В какой системе счисления представлены коды в перечисленных вами таблицах кодировок?

Ребята отвечают на поставленные вопросы.

IV. Домашнее задание

(Слайд 15) По учебнику Угриновича § 3.1, задания для самостоятельного выполнения 3.1, 3.2. Для желающих: Придумать свой шифр и закодировать любую фразу. Принести на следующий урок на отдельных листах.

Учитель подводит итог урока, выставляет оценки.

До свидания, спасибо за урок.

Приложение 1

Приложение 2

Приложение 3

Общий педагогический анализ учебного занятия по физике, данного в 8 классе

Пияева Ольга Николаевна

Место работы: муниципальное бюджетное общеобразовательное учреждение «Тарасковская средняя общеобразовательная школа»

Должность: учитель информатики

Адрес школы : Московская область Каширский район деревня Тарасково улица Комсомольская д.22

Класс: 8

Тема урока: Кодирование текстовой информации. (первый урок по теме «Кодирование информации»)

Тип урока: изучение новых знаний

Вид урока: традиционный с использованием информационных технологий

    Цели:

Обучающая:

    познакомить учащихся со способами кодирования информации в компьютере;

    рассмотреть примеры решения задач;

Развивающая:

    способствовать развитию познавательных интересов учащихся.

Воспитательная:

    воспитывать выдержку и терпение в работе, чувства товарищества и взаимопонимания.

Задачи:

Обучающая:

    формировать знания учащихся по теме “Кодирование текстовой информации”;

Развивающая:

    развить навыки анализа и самоанализа;

    содействовать формированию у школьников образного мышления;

Воспитательная:

    формировать умения планировать свою деятельность.

Оборудование:

    рабочие места учеников (персональный компьютер),

    рабочее место учителя,

    мультимедийный проектор,

Программное обеспечение: ПК, программа PowerPoint , таблицы, схемы.

Информационная карта урока:

п/п

Этап урока

При-

мер-

ное время

Дидактичес

кая цель

Формы и методы работы

Виды деятельности учащихся

Организацион-

ный момент

2 мин

Включить учащихся в деловой ритм, подготовить класс к работе

Устное сообщение учителя

Настрой на продуктив-

ную деятель-

ность

Изучение

нового

материала

18 мин

Сформировать познавательные мотивы. Обеспечить принятие учащимися цели урока. Сформировать конкретные представления о кодировании текстовой информации.

Объяснение нового материала с использова-

нием презентации

Слушание и запоминание, ответы на вопросы учителя, выполнение задания на декодирова-

ние информации

Физкультминутка

2 мин.

Предупредить утомление детей

Выполнение упражнений

Выполнение упражнений

Закрепление полученных знаний

10 мин.

Организовать деятельность по применению новых знаний

Практическая работа

Выполнение практиче-

ской работы

Первичная проверка понимания

8 мин

Выявить уровень первичного усвоения нового материала

Фронтальный опрос

Дифференцированная самостоятельная работа

Отвечают на вопросы учителя

Выполняют самостоятельную работу

Домашнее задание

2 мин.

Дать информацию по домашнему заданию и инструкцию по его выполнению

Инструктаж по выполнению домашнего задания

Запись домашнего задания в дневники

Подведение итогов урока (рефлексия)

3 мин.

Самоанализ учащимися понимания темы

Прием незаконченного предложения

Обсуждение того, что узнали, и того, как работали

Ход урока.

Организационный момент.

Ребята, я рада видеть Вас в полном составе, в хорошем настроении и надеюсь на плодотворный урок.

Садитесь.

Сейчас мы с Вами проведем рейд готовности к уроку:

    покажите дневники

    покажите ручки

    покажите учебники

    покажите тетради

К уроку все готово, можем начинать.

Изучение нового материала

Сегодня мы приступаем к изучению большой темы «Кодирование и обработка текстовой информации», и первый наш урок называется «Кодирование текстовой информации»
На экране первый слайд мультимедийной презентации с темой урока.

На сегодняшнем уроке мы познакомимся с приемами кодирования текста, которые были изобретены людьми на различных этапах развития человеческой мысли, с двоичным кодированием информации в компьютере, научимся определять числовые коды символов, вводить символы с помощью числовых кодов и осуществлять перекодировку русскоязычного текста в текстовом редакторе.

Проблема защиты информации волнует людей несколько столетий.

Коды появились в глубокой древности в виде криптограмм (что в переводе с греческого означает «тайнопись»). Порой священные иудейские тексты шифровались методом замены. Вместо первой буквы алфавита писалась последняя буква, вместо второй – предпоследняя и т.д. этот древний шифр назывался атбаш.

Показ слайда №2

Перед вами несколько приёмов кодирования текста, которые были изобретены на различных этапах развития человеческой мысли.

- криптография – это тайнопись, система изменения письма с целью сделать текст непонятным для непосвященных лиц;

- азбука Морзе или неравномерный телеграфный код, в котором каждая буква или знак представлены своей комбинацией коротких элементарных посылок электрического тока (точек) и элементарных посылок утроенной продолжительности (тире);

- сурдожесты – язык жестов, используемый людьми с нарушениями слуха.

Вопрос : Какие примеры кодирования текстовой информации можно привести еще?

Учащиеся приводят примеры. ( шифр Вижинера, шифр замены)

Показ слайда №3

Один из самых первых известных методов шифрования носит имя римского императора Юлия Цезаря (I век до н.э.). Этот метод основан на замене каждой буквы шифруемого текста, на другую, путем смещения в алфавите от исходной буквы на фиксированное количество символов. Так слово байт при смещении на три символа вправо кодируется словом дгмх . Обратный процесс расшифровки данного слова – необходимо заменять каждую зашифрованную букву, на третью слева от неё.

Показ слайда № 4

В Древней Греции (II в. До н.э.) был известен шифр, который создавался с помощью квадрата Полибия. Для шифрования использовалась таблица, представляющая собой квадрат с шестью столбцами и шестью строками, которые нумеровались цифрами от 1 до 6. В каждую клетку такой таблицы записывалась одна буква. В результате каждой букве соответствовала пара чисел, и шифрование сводилось к замене буквы парой цифр. Первая цифра указывает номер строки, вторая – номер столбца. Слово байт кодируется в этом случае так: 12 11 25 42

Показ слайда № 5.

Расшифруйте с помощью квадрата Полибия следующую фразу

«33 11 35 36 24 32 16 36 11 45 43 51 24 32 41 63»

Вопрос : Что у вас получилось?

Ответ учащихся : На примерах учимся

Ответ сравнивается с появившемся на слайде №5 правильным ответом.

Двоичное кодирование текстовой информации в компьютере

Учитель : Информация, выраженная с помощью естественных и формальных языков в письменной форме, обычно называют текстовой информацией.

Показ слайда № 6.

Для представления текстовой информации (прописные, строчные буквы русского и латинского алфавитов, цифры, знаки и математические символы) достаточно 256 различных знаков.

Если сложить все знаки:

33 строчные буквы русского алфавита + 33 прописные буквы = 66;

Для латинского алфавита 26 + 26 = 52;

Цифры от 0 до 9

получается, что нужно 127 символов. Остается еще 129 значений, которые можно использовать для обозначения знаков препинания, арифметических знаков, служебных операций (перевод строки, пробел и т.д.)

Показ слайда № 7

По формуле N = 2 I можно вычислить, какое количество информации необходимо, чтобы закодировать каждый знак:

N = 2 I  256 = 2 I  2 8 = 2 I I = 8 битов

Для обработки текстовой информации на компьютере необходимо представить ее в двоичной знаковой системе. Мы с Вами вычислили, что для кодирования каждого знака требуется 8 бит информации, т. е. длина двоичного кода знака составляет восемь двоичных знаков. Каждому знаку необходимо поставить в соответствие уникальный двоичный код из интервала от 00000000 до 11111111 (в десятичном коде от 0 до 255).

При вводе в компьютер текстовой информации происходит её двоичное кодирование. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код знака). В процессе вывода на экран компьютера производится обратное перекодирование, т.е. преобразование двоичного кода в его изображение.

Показ слайда № 8

Присваивание знаку конкретного двоичного кода – это вопрос соглашения, которое фиксируется в кодовой таблице. Принято интернациональное соглашение о присвоении каждому символу своего уникального кода. В качестве международного стандарта принята кодовая таблица ASCII (American Standard Code for Information Interchange - американский стандартный код для обмена информацией)

В этой таблице представлены коды от 0 до 127 (буквы английского алфавита, знаки математических операций, служебные символы и т.д.), причем коды от 0 до 32 отведены не символам, а функциональным клавишам.

Запишите название этой кодовой таблицы и диапазон кодируемых символов.

Коды с 128 по 255 выделены для национальных стандартов каждой страны. Этого достаточно для большинства развитых стран.

Для России были введены несколько различных стандартов кодовой таблицы (коды с 128 по 255).

Показ слайда № 9.

Вот некоторые из них. Рассмотрим и запишем их названия:

КОИ - 8 , Windows, MS-DOS , Мас , ISO.

В мире существует примерно 6800 различных языков. Если прочитать текст, напечатанный в Японии на компьютере в России или США, то понять его будет нельзя. Чтобы буквы любой страны можно было читать на любом компьютере, для их кодировки стали использовать два байта (16 бит).

Давайте, с Вами также определим количество символов, которые можно закодировать согласно этому стандарту:

N = 2 I = 2 16 = 65536

такого количества символов достаточно, чтобы закодировать не только русский и латинский алфавиты, но и греческий, арабский, иврит и другие алфавиты.

Физкультминутка

А сейчас проведем физкультминутку: сначала кончиком носа напишите образно на потолке «Мне нравится информатика».

Физкультминутка для глаз:

    Быстро поморгать, закрыть глаза и посидеть спокойно, медленно считая до 5. Повторить 4-5 раз.

    Вытянуть правую руку вперед. Следить глазами, не поворачивая головы, за медленными движениями указательного пальца вытянутой руки влево и вправо, вверх и вниз. Повторить 4-5 раз.

    Посмотреть на указательный палец вытянутой руки на счет 1-4, потом перенести взор вдаль на счет 1-6. Повторить 4-5 раз.

    В среднем темпе проделать 3-4 круговых движения глазами в правую сторону, столько же в левую сторону. Расслабив глазные мышцы, посмотреть вдаль на счет 1-6. Повторить 1-2 раза.

Закрепление полученных знаний.

Не зря римский баснописец Федр сказал: «Наука – капитан, а практика – солдаты». Поэтому сейчас перейдем от теории к практике.

Откройте учебник на странице 152, найдите практическую работу №8, прочитайте ее.

Запишите в тетрадь тему практической работы «Кодирование текстовой информации», цель работы: научиться определять числовые коды символов, вводить символы с помощью числовых кодов и осуществлять перекодировку русскоязычного текста в текстовом редакторе.

Включите компьютеры, и мы вместе выполним эту работу.

Задание №1. В текстовом редакторе Word определить числовые коды нескольких символов:

    в кодировке Windows ;

    в кодировке Unicode (Юникод)

    Запустить текстовый редактор Word

    ввести команду (Вставка – Символ…). На экране появится диалоговая панель Символ. Центральную часть диалоговой панели занимает таблица символов.

    Для определения десятичного числового кода символа в кодировке Windows с помощью раскрывающегося списка из: выбрать тип кодировки кириллица (дес.).

    В таблице символов выбрать символ. В текстовом поле Код знака: появится десятичный код символа.

    Для определения шестнадцатеричного числового кода в кодировке Unicode с помощью раскрывающегося списка из: выбрать тип кодировки Юникод (шестн.).

    В таблице символов выбрать символ. В текстовом поле Код знака: появится шестнадцатеричный числовой код символа.

    С помощью электронного калькулятора перевести шестнадцатеричный числовой код в десятичную систему счисления:

0586 16 = Х 10 ; 1254 16 = Х 10 ; 8569 16 = Х 10 ;

Задание №2. В текстовом редакторе Блокнот ввести с помощью числовых кодов последовательность символов в кодировках Windows и MS – DOS .

    1. Запустить стандартное приложение Блокнот командой (Программа – Стандартные – Блокнот).

      С помощью дополнительной цифровой клавиатуры при нажатой клавише  Alt  ввести число 0224, отпустить клавишу  Alt  , в документе появится символ «а». Повторить процедуру для числовых кодов от 0225 до 0233, в документе появится последовательность из 10 символов «абвгдежзий» в кодировке Windows .

      С помощью дополнительной цифровой клавиатуры при нажатой клавише  Alt  ввести число 224, отпустить клавишу  Alt  , в документе появится символ «р». Повторить процедуру для числовых кодов от 225 до 233, в документе появится последовательность из 10 символов «рстуфхцчшщ» в кодировке MS – DOS .

Первичная проверка понимания

Вопросы учителя

1. Какой принцип кодирования текстовой информации используется в компьютере? (При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код знака). В процессе вывода на экран компьютера производится обратное перекодирование, т.е. преобразование двоичного кода в его изображение.)

2. Как называется международная таблица кодировки символов? ( ASCII (American Standard Code for Information Interchange – американский стандартный код для обмена информацией )

3. Перечислите названия таблиц кодировок для русскоязычных символов. (КОИ - 8 , MS - DOS , Мас , ISO , Windows )

Учитель раздает карточки с индивидуальными заданиями. (Петя и Коля пишут друг другу электронные письма в кодировке КОИ - 8. Однажды Петя ошибся и отправил письмо в кодировке Windows . Коля получил письмо и как всегда прочитал его в КОИ – 8. Получился бессмысленный текст, в котором часто повторялось слово ******. Какое слово было в исходном тексте письма?

1 вариант – УЛБОЕТ (сканер)

2 вариант - РБНСФШ (память)

3 вариант – РТЙОФЕТ (принтер)

4 вариант – ДЙУЛЕФБ (дискета)

5 вариант – ФТЕЛВПМ (трекбол)

6 вариант – НПОЙФПТ (монитор)

7 вариант – РТПГЕУУПТ (процессор)

8 вариант – ЛМБЧЙБФХТБ (клавиатура)

9 вариант – НБФЕТЙОУЛБС РМБФБ (материнская плата)

10 вариант – ФБЛФПЧБС ЮБУФПФБ РТПГЕУУПТБ (тактовая частота процессора)

Домашнее задание

По учебнику Н. Угриновича п.3.1. стр. 74 - 77

Закодируйте в коде КОИ – 8 свои имя и фамилию. Запишите результат в виде:

    двоичного кода

    десятичного кода

Дополнительное задание (на карточке) : расшифруйте текст с помощью кодировки КОИ -8:

254 212 207 194 205 213 196 210 207 214 201 218 206 216 208 210 207 214 201 212 216, 218 206 193 212 216 206 193 196 207 194 206 207 206 197 205 193 204 207,

228 215 193 215 193 214 206 217 200 208 215 193 215 201 204 193 218 193 208 207 205 206 201 196 204 209 206 193 222 193 204 193:

244 217 204 213 222 219 197 199 207 204 207 196 193 202, 222 197 205 222 212 207 208 207 208 193 204 207 197 211 212 216,

233 204 213 222 219 197 194 213 196 216 207 196 201 206, 222 197 205 215 205 197 211 212 197 21 203 197 205 208 207 208 193 204 207.

(Чтоб мудро жизнь прожить, знать надобно немало,

Два важных правила запомни для начала:

Ты лучше голодай, чем, что попало есть,

    Информатика и информационные технологии. Учебник для 8 класса /Н.Д. Угринович. – М. БИНОМ. Лаборатория знаний, 2011. – 205 с.: ил.

    Журнал «Информатика и образование», № 4,2003 год, №6,2006 год

    Информатика 7 – 9 кл. / А.Г. Кушниренко, Г.В. Лебедев, Я.Н. Зайдельман, М.:Дрофа, 2001. – 336 с.: ил.

Тема урока: « Кодирование текстовой информации».

Предмет: Информатика и ИКТ .

Класс: 9-10.

Ключевые слова : информатика, кодирование текста, кодирование информации.

Литература, эор.

1. Учебник Угринович Н.Д. Информатика и ИКТ базовый курс 9 класс;

Оборудование : компьютерный класс, программы Microsoft Office PowerPoint , задания к уроку в электронном виде (см. приложение).

Тип урока : Изучение новой темы .

Формы работы : фронтальная, коллективная, индивидуальная.

Аннотация: количество учащихся класс, подгруппа.

Цель урока: Дать представление о кодирование текстовой информации.

Задачи:

    Формирование представления о кодирование текстовой информации;

    Способствовать воспитанию чувств а коллективизма, умени я выслушивать ответы товарищей ;

    Развитие внимания и логического мышления;

    Развитие интереса к изучению компьютерных программ.

Ход урока:

Вводный рассказ учителя с помощью презентации (на эк ране представлена презентация по теме).

Начиная с 60-х годов, компьютеры все больше стали использовать для обработки текстовой информации и в настоящее время большая часть ПК в мире занято обработкой именно текстовой информации.

Для представления текстовой информации достаточно 256 знаков.
По формуле N = 2 I , 256= 2 8 следовательно, для кодирования одного символа используется количество информации равное 1 байту. (Особое внимание следует обратить на формулу).

Кодирование заключается в том, что каждому символу ставиться в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).

Важно, что присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется кодовой таблицей.

Для разных типов ЭВМ используются различные кодировки.

С распространением IBM PC международным стандартом стала таблица кодировки ASCII ( American Standart Code for Information Interchange ) – Американский стандартный код для информационного обмена.

Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.

Остальные 128 кодов используются в разных вариантах. В русских кодировках размещаются символы русского алфавита.

В настоящее время существует 5 разных кодовых таблиц для русских букв (КОИ8, СР1251 , СР866, Mac , ISO ).

В настоящее время получил широкое распространение новый международный стандарт Unicode , который отводит на каждый символ два байта. С его помощью можно закодировать 65536 (2 16 = 65536) различных символов.

Цифры кодируются по стандарту ASCII в двух случаях – при вводе-выводе и когда они встречаются в тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичных код.

Возьмем число 57 .

При использовании в тексте каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII. В двоичной системе это – 0011010100110111.

При использовании в вычислениях, код этого числа будет получен по правилам перевода в двоичную систему и получим – 00111001.

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы . Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов .

В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации , то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.

I = K × i , где

I -информационный объем сообщения

K - количество символов в тексте

i - информационный вес одного символа

2 i = N

N - мощность алфавита

Решение задач. Презентация построена по принципу «Решили с учителем - решили сами».

Подведение итогов. Выставление отметок. Домашнее задание.

Урок № 13

Тема урока: “Кодирование текстовой информации”.

Тип урока : Обучающий.

Цели урока:

Познакомить учащихся со способами кодирования информации в компьютере;

Рассмотреть примеры решения задач;

Способствовать развитию познавательных интересов учащихся.

Воспитывать выдержку и терпение в работе, чувства товарищества и взаимопонимания.

Задачи урока:

Формировать знания учащихся по теме “Кодирование текстовой (символьной) информации”;

Содействовать формированию у школьников образного мышления;

Развить навыки анализа и самоанализа;

Формировать умения планировать свою деятельность.

Оборудование:

рабочие места учеников (персональный компьютер),

рабочее место учителя,

интерактивная доска,

мультимедийный проектор,

мультимедийная презентация,

Ход урока

I. Организационный момент.

На интерактивной доске первый слайд мультимедийной презентации с темой урока.

Учитель: Здравствуйте, ребята. Садитесь. Дежурный, доложите об отсутствующих. (Доклад дежурного). Спасибо.

II. Работа над темой урока.

1. Объяснение нового материала.

Объяснение нового материала проходит в форме эвристической беседы с одновременным показом мультимедийной презентации на интерактивной доске (Приложение 1).

Учитель: Кодирование какой информации мы изучали на предыдущих занятиях?

Ответ : Кодирование графической и мультимедийной информации.

Учитель : Перейдём к изучению нового материала. Запишите тему урока “Кодирование текстовой информации” (слайд 1). Рассматриваемые вопросы (слайд 2):

Исторический экскурс;

Двоичное кодирование текстовой информации;

Расчет количества текстовой информации.

Исторический экскурс

Человечество использует шифрование (кодировку) текста с того самого момента, когда появилась первая секретная информация. Перед вами несколько приёмов кодирования текста, которые были изобретены на различных этапах развития человеческой мысли (слайд 3) :

Криптография - это тайнопись, система изменения письма с целью сделать текст непонятным для непосвященных лиц;

Азбука Морзе или неравномерный телеграфный код, в котором каждая буква или знак представлены своей комбинацией коротких элементарных посылок электрического тока (точек) и элементарных посылок утроенной продолжительности (тире);

Сурдожесты - язык жестов, используемый людьми с нарушениями слуха.

Вопрос : Какие примеры кодирования текстовой информации можно привести еще?

Учащиеся приводят примеры (дорожные знаки, электрические схемы, штрих-код товара).

Учитель : (Показ слайда 4). Один из самых первых известных методов шифрования носит имя римского императора Юлия Цезаря (I век до н.э.) . Этот метод основан на замене каждой буквы шифруемого текста, на другую, путем смещения в алфавите от исходной буквы на фиксированное количество символов, причем алфавит читается по кругу, то есть после буквы я рассматривается а . Так слово байт при смещении на два символа вправо кодируется словом гвлф . Обратный процесс расшифровки данного слова - необходимо заменять каждую зашифрованную букву, на вторую слева от неё.

(Показ слайда 5) Расшифруйте фразу персидского поэта Джалаледдина Руми “ кгнусм ёогкг фесл тцфхя фзужщз фхгрзх ёогксп ”, закодированную с помощью шифра Цезаря. Известно, что каждая буква исходного текста заменяется третьей после нее буквой. В качестве опоры используйте буквы русского алфавита, расположенные на слайде.

Вопрос : Что у вас получилось?

Ответ учащихся :

Закрой глаза свои пусть сердце станет глазом

Ответ сравнивается с появившемся на слайде 5 правильным ответом.

Двоичное кодирование текстовой информации

Информация, выраженная с помощью естественных и формальных языков в письменной форме, называется текстовой информацией (слайд 6).

Какое количество информации необходимо, чтобы закодировать каждый знак, можно вычислить по формуле: N = 2 I .

Вопрос : В каком из перечисленных приёмов кодирования используется двоичный принцип кодирования информации?

Ответ учащихся: В азбуке Морзе.

Учитель : В компьютере также используют принцип двоичного кодирования информации. Только вместо точки и тире используют 0 и 1 (слайд 7) .

Традиционно для кодирования одного символа используется 1 байт информации.

Вопрос : Какое количество различных символов можно закодировать? (напомнить, что 1 байт=8 бит)

Ответ учащихся : N = 2 I = 2 8 = 256.

Учитель : Верно. Достаточно ли этого для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры и другие символы?

Дети подсчитывают количество различных символов:

33 строчные буквы русского алфавита + 33 прописные буквы = 66;

Для английского алфавита 26 + 26 = 52;

Цифры от 0 до 9 и т.д.

Учитель : Ваш вывод?

Вывод учащихся : Получается, что нужно 127 символов. Остается еще 129 значений, которые можно использовать для обозначения знаков препинания, арифметических знаков, служебных операций (перевод строки, пробел и т.д.. Следовательно, одного байта вполне хватает, чтобы закодировать необходимые символы для кодирования текстовой информации.

Учитель : В компьютере каждый символ кодируется уникальным кодом.

Принято интернациональное соглашение о присвоении каждому символу своего уникального кода. В качестве международного стандарта принята кодовая таблица ASCII (American Standard Code for Information Interchange) (слайд 8).

В этой таблице представлены коды от 0 до 127 (буквы английского алфавита, знаки математических операций, служебные символы и т.д.), причем коды от 0 до 32 отведены не символам, а функциональным клавишам. Запишите название этой кодовой таблицы и диапазон кодируемых символов.

Коды с 128 по 255 выделены для национальных стандартов каждой страны. Этого достаточно для большинства развитых стран.

Для России были введены несколько различных стандартов кодовой таблицы (коды с 128 по 255).

Вот некоторые из них (слайд 9-10). Рассмотрим и запишем их названия:

КОИ8-Р, СР1251, СР866, Мас, ISO.

Откройте практикум по информатике на стр. 65-66 и прочитайте про эти кодировочные таблицы.

Учитель : В текстовом редакторе MS Word чтобы вывести на экране символ по его номеру кода, необходимо удерживая на клавиатуре клавишу “ALT” набрать код символа на дополнительной цифровой клавиатуре (слайд 11):

Понятие кодировки Unicode

Решение : В данной фразе 108 символов, учитывая знаки препинания, кавычки и пробелы. Умножаем это количество на 8 бит. Получаем 108*8=864 бита.

Учитель : Рассмотрим задачу № 2. (Условие выводится на интерактивной доске). <Рисунок 3> Запишите её условие: Лазерный принтер Canon LBP печатает со скоростью в среднем 6,3 Кбит в секунду. Сколько времени понадобится для распечатки 8-ми страничного документа, если известно, что на одной странице в среднем по 45 строк, в строке 70 символов (1 символ - 1 байт) (см. рис. 2).

Решение:

1) Находим количество информации, содержащейся на 1 странице:

45 * 70 * 8 бит = 25200 бит

2) Находим количество информации на 8 страницах:

25200 * 8 = 201600 бит

3) Приводим к единым единицам измерения. Для этого Кбиты переводим в биты:

6,3*1024=6451,2 бит/сек.

4) Находим время печати: 201600: 6451,2 = 31,25 секунд.

III. Обобщение

Вопросы учителя (слайд 14):

1. Какой принцип кодирования текстовой информации используется в компьютере?

2. Как называется международная таблица кодировки символов?

3. Перечислите названия таблиц кодировок для русскоязычных символов.

4. В какой системе счисления представлены коды в перечисленных вами таблицах кодировок?

Мы кодировали символы, звук и графику. А можно закодировать эмоции?

Демонстрируется слайд 14.

IV. Итог урока. Домашнее задание

§ 2.1,задача 2.1, записи в тетрадях.


Кодирование информации - процесс преобразования информации из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической переработки.

Кодирование текстовой информации

Для записи текстовой (знаковой) информации всегда используется какой-либо язык (естественный или формальный).

Всё множество используемых в языке символов называется алфавитом . Полное число символов алфавита N называют его мощностью . При записи текста в каждой очередной позиции может появиться любой из N символов алфавита, т. е. может произойти N событий. Следовательно, каждый символ алфавита содержит i бит информации, где i определяется из неравенства (формула Хартли): 2 i N . Тогда общее количество информации в тексте определяется формулой:

V = k * i ,

где V – количество информации в тексте; k – число знаков в тексте (включая знаки препинания и даже пробелы), i - количество бит, выделенных на кодирование одного знака.

Так как каждый бит – это 0 или 1, то любой текст может быть представлен последовательностью нулей и единиц. Именно так текстовая информация хранится в памяти компьютера. Присвоение символу алфавита конкретного двоичного кода - это вопрос соглашения, зафиксированного в кодовой таблице. В настоящее время широкое распространение получили кодовые таблицы ASCII и Unicode .


ASCII (American Standart Code for Informational Interchange - Американский стандартный код информационного обмена) используется достаточно давно. Для хранения кода одного символа выделено 8 бит, следовательно, кодовая таблица поддерживает до 28 = 256 символов. Первая половина таблицы (128 символов) - управляющие символы, цифры и буквы латинского алфавита. Вторая половина отводится под символы национальных алфавитов. К сожалению, в настоящее время существует целых пять вариантов кодовых таблиц для русских букв (КОИ-8, Windows-1251, ISO, DOS, MAC), поэтому тексты созданные в одной кодировке неверно отображаются в другой. (Наверное, Вы встречали русскоязычные сайты, тексты которых выглядят как бессмысленный набор знаков?).

Unicode - получил распространение в последние годы. Для хранения кода одного символа выделено 16 бит, следовательно, кодовая таблица поддерживает до 216 = 65536 символов. Такого пространства достаточно, чтобы в одном стандарте объединить все "живые" официальные (государственные) письменности. Кстати, стандарт ASCII вошел в состав Unicode.

Если кодирование – это перевод информации с одного языка на другой (запись в другой системе символов, в другом алфавите), то декодирование – обратный перевод.

При кодировании один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия), поэтому кодирование может быть равномерное и неравномерное. При равномерном кодировании все символы кодируются кодами равной длины, при неравномерном кодировании разные символы могут кодироваться кодами разной длины, что затрудняет декодирование.

декодировать с начала , если выполняется условие Фано : никакое кодовое слово не является началом другого кодового слова. Закодированное сообщение можно однозначно декодировать с конца , если выполняется обратное условие Фано : никакое кодовое слово не является окончанием другого кодового слова. Условие Фано – это достаточное, но не необходимое условие однозначного декодирования.

Решение задач на кодирование текстовой информации

1.Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке длиной в 20 символов, первоначально записанного в 2-байтном коде Unicode, в 8-битную кодировку КОИ-8. На сколько бит уменьшилась длина сообщения? В ответе запишите только число.

Решение:

1) при 16-битной кодировке объем сообщения – 16*20 бит

2) когда его перекодировали в 8-битный код, его объем стал равен– 8*20 бит

3) таким образом, сообщение уменьшилось на 16*20 – 8*20 = 8*20 = 160 бит

Ответ: 160

2. Определите информационный объем текста в битах

Бамбарбия! Кергуду!

Решение:

1) в этом тексте 19 символов (обязательно считать пробелы и знаки препинания)

2) если нет дополнительной информации, считаем, что используется 8-битная кодировка (чаще всего явно указано, что кодировка 8- или 16-битная), поэтому в сообщении 19*8 = 152 бита информации

Ответ: 152

3. В таблице ниже представлена часть кодовой таблицы ASCII:

Символ

Десятичный код

Шестнадцатеричный код

Каков шестнадцатеричный код символа «q»?


Решение:

1) в кодовой таблице ASCII все заглавные латинские буквы A-Z расставлены по алфавиту, начиная с символа с кодом 65=4116

2) все строчные латинские буквы a-z расставлены по алфавиту, начиная с символа с кодом 97=6116

3) отсюда следует, что разница кодов букв «q» и «a» равна разнице кодов букв «Q» и «A», то есть, 5116 – 4116=1016

4) тогда шестнадцатеричный код символа «q» равен коду буквы «a» плюс 1016

5) отсюда находим 6116 + 1016=7116.

Ответ: 71

4. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–00, Б–010, В–011, Г–101, Д–111. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.

1) для буквы Б –это невозможно

3) для буквы В –для буквы Г – 01

Решение (1 способ - проверка условий Фано) :

3) для однозначного декодирования достаточно, чтобы выполнялось одно из условий Фано: прямое или обратное условие Фано;

4) проверяем последовательно варианты 1, 3 и 4; если ни один из них не подойдет, придется выбрать вариант 2 («это невозможно»);

3) проверяем вариант 1: А–00, Б–01, В–011, Г–101, Д–111.

«прямое» условие Фано не выполняется (код буквы Б совпадает с началом кода буквы В);

«обратное» условие Фано не выполняется (код буквы Б совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

4) проверяем вариант 3: А–00, Б–010, В–01, Г–101, Д–111.

«прямое» условие Фано не выполняется (код буквы В совпадает с началом кода буквы Б);

«обратное» условие Фано не выполняется (код буквы В совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

5) проверяем вариант 4: А–00, Б–010, В–011, Г–01, Д–111.

«прямое» условие Фано не выполняется (код буквы Г совпадает с началом кодов букв Б и В); но «обратное» условие Фано выполняется (код буквы Г не совпадает с окончанием кодов остальных буквы); поэтому этот вариант подходит;

Ответ : 4

Решение (2 способ, дерево) :

1) построим двоичное дерево, в котором от каждого узла отходит две ветки, соответствующие выбору следующей цифры кода – 0 или 1; разместим на этом дереве буквы А, Б, В, Г и Д так, чтобы их код получался как последовательность чисел на рёбрах, составляющих путь от корня до данной буквы (красным цветом выделен код буквы В – 011):

https://pandia.ru/text/78/419/images/image003_52.gif" width="391" height="166">DIV_ADBLOCK100">

3) но бит четности нам совсем не нужен , важно другое: пятый бит в каждой пятерке можно отбросить !

4) разобъем заданную последовательность на группы по 5 бит в каждой:

01010, 10010, 01111, 00011.

5) отбросим пятый (последний) бит в каждой группе:

0101, 1001, 0111, 0001.

это и есть двоичные коды передаваемых чисел:

01012 = 5, 10012 = 9, 01112 = 7, 00012 = 1.

6) таким образом, были переданы числа 5, 9, 7, 1 или число 5971.

Ответ: 2

Задачи для тренировки:

1) Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, первоначально записанного в 16-битном коде Unicode , в 8-битную кодировку
КОИ-8 . При этом информационное сообщение уменьшилось на 800 бит. Какова длина сообщения в символах?

2) В таблице ниже представлена часть кодовой таблицы ASCII:

Символ

Десятичный код

Шестнадцатеричный код

Каков шестнадцатеричный код символа «p» ?

3) Текстовый документ, состоящий из 3072 символов, хранился в 8-битной кодировке КОИ-8. Этот документ был преобразован в 16-битную кодировку Unicode. Укажите, какое дополнительное количество Кбайт потребуется для хранения документа. В ответе запишите только число.

4) Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11 соответственно). Если таким способом закодировать последовательность символов ГБАВ и записать результат в шестнадцатеричной системе счисления, то получится:

5) Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв - из двух бит, для некоторых - из трех). Эти коды представлены в таблице:

Определите, какой набор букв закодирован двоичной строкой

1) baade 2) badde 3) bacde 4) bacdb

6) Для кодирования букв А, В, С, D используются трехразрядные последовательные двоичные числа, начинающиеся с 1 (от 100 до 111 соответственно). Если таким способом закодировать последовательность символов CDAB и записать результат в шестнадцатеричном коде, то получится:

1) А5СD16 4) DE516

7) Для 6 букв латинского алфавита заданы их двоичные коды (для некоторых букв из двух бит, для некоторых – из трех). Эти коды представлены в таблице:

Определите, какая последовательность из 6 букв закодирована двоичной строкой.

8) Для кодирования сообщения, состоящего только из букв А, Б, В и Г, используется неравномерный по длине двоичный код:

Если таким способом закодировать последовательность символов ГАВБВГ и записать результат в шестнадцатеричном коде, то получится:

1) 62DD2) 6213316

9) Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=1, Б=01, В=001. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

10) Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23, то получим последовательность). Определите, какое число передавалось по каналу в виде?

11) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–10, Б–11, В–000, Г–001, Д–011. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.

1) это невозможно 2) для буквы Б – 1

3) для буквы Г –для буквы Д – 01

12) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Использовали код: А–111, Б–110, В–100, Г–101. Укажите, каким кодовым словом может быть закодирована буква Д. Код должен удовлетворять свойству однозначного декодирования. Если можно использовать более одного кодового слова, укажите кратчайшее из них.

13) Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=1, Б=000, В=001. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

Кодирование графической информации

Преобразование графической информации из аналоговой формы в дискретную производится путем дискретизации , т. е. разбиения непрерывного графического изображения на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация это преобразование непрерывного изображения в набор дискретных значений в форме кода.

В процессе кодирования изображения производится пространственная дискретизация . Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные мелкие фрагменты (точки), каждому из которых присваивается код цвета.

В результате пространственной дискретизации графическая информация представляется в виде растрового изображения . Растровое изображение состоит из определённого количества строк, каждая из которых содержит определённое количество точек (пиксел).

Качество изображения зависит от разрешающей способности.

Разрешающая способность растрового изображения определяется количеством точек по горизонтали (X) и количеством точек по вертикали (Y ) на единицу длины изображения.

Чем меньше размер точки, тем больше разрешающая способность (больше строк растра и точек в строке) и, соответственно, выше качество изображения.
Величина разрешающей способности выражается в (dot per inch - точек на дюйм), т. е. в количестве точек в полоске изображения длиной в 1 дюйм (1дюйм = 2,54 см). Оцифровка графических изображений с бумаги или плёнок производится с помощью сканера. Сканирование производится путём перемещения светочувствительных элементов вдоль изображения. Характеристики сканера выражаются двумя числами, например 1200х2400 dpi. Первое число определяет количество светочувствительных элементов на одном дюйме полоски и является оптическим разрешением. Второе - является аппаратным разрешением и определяет количество микрошагов при перемещении на один дюйм вдоль изображения.

В процессе дискретизации могут использоваться различные палитр цветов. Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации для кодирования цвета каждой точки связаны между собой известной формулой Хартли: N=2I, где I – глубина цвета, а N – количество цветов (палитра).

Количество информации, которое используется для кодирования цвета точки изображения, называется глубиной цвета. Наиболее распространёнными значениями глубины цвета являются значения из таблицы:

Таблица. Глубина цвета и количество отображаемых цветов.

Глубина цвета (i)

Количество изображаемых цветов (N)

Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета. Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Разрешение может быть: 800х600, 1024х768, 1152х864 и выше. Количество отображаемых цветов может изменяться от 256 цветов до более чем 16 миллионов.

Видеопамять

№ точки

Двоичный код цвета точки

.........................................................................................

..........................................................................................

Рис. Формирование растрового изображения на экране.

Рассмотрим пример формирования на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего точек) и глубиной цвета 8 битов. Двоичный код цвета всех точек хранится в видеопамяти компьютера, которая находится на видеокарте.

Периодически, с определённой частотой, коды цветов точек считываются из видеопамяти и точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия пользователем.

Информационный объём требуемой видеопамяти можно рассчитать по формуле:

V =I · X · Y,

где V - информационный объём видеопамяти в битах;
X · Y - количество точек изображения (разрешение экрана);
I - глубина цвета в битах на точку.

Например, необходимый объём видеопамяти для графического режима с разрешением 800х600 точек и глубиной цвета 24 бита равен:

V =I · X · Y= 24 х 800 х 600 =бит = 1 байт.

Цветное изображение на экране монитора формируется за счет смешивания базовых цветов: красного, зеленого и синего (палитра RGB). Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов, выделяется по 8 бит, т. е. для каждого из цветов возможны N=28=256 уровней интенсивности, заданные двоичными кодами от минимального до максимального.

Таблица. Формирование некоторых цветов при глубине цвета 24 бита.

Название

Интенсивность

Часто цвет записывается в виде - #RRGGBB, где RR – шестнадцатеричный код красной цветовой компоненты, GG - шестнадцатеричный код зеленой цветовой компоненты, BB - шестнадцатеричный код синей цветовой компоненты. Чем больше значение компоненты, тем больше интенсивность свечения соответствующего базового цвета. 00 – отсутствие свечения, FF – максимальное свечение (FF16=25510), 8016 – среднее значение яркости. Если компонента имеет интенсивность цвета <8016 , то это даст темный оттенок, а если >=8016 , то светлый.

Например,

#FF0000 – красный цвет (красная составляющая максимальная, а остальные равны нулю)

#000000 – черный цвет (ни одна компонента не светится)

#FFFFFF – белый цвет (все составляющие максимальны и одинаковы, наиболее яркий цвет)

#404040 – темно-серый цвет (все составляющие одинаковы и значения меньше среднего значения яркости)

#8080FF – светло-синий (максимальная яркость у синий составляющей, а яркости других компонент одинаковые и равны 8016).

Решение задач на кодирование графической информации

1. Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения?

Решение: При кодировании с палитрой количество бит на 1 пиксель (K ) зависит от количества цветов в палитре N , они связаны формулой: https://pandia.ru/text/78/419/images/image005_31.gif" width="71" height="21 src="> (2), где – число бит на пиксель, а – общее количество пикселей.

1) находим общее количество пикселей https://pandia.ru/text/78/419/images/image009_17.gif" width="61" height="19">байтбайтбитбит

3) определяем количество бит на пиксель: #ХХХХХХ", где в кавычках задаются шестнадцатеричные значения интенсивности цветовых компонент в 24-битной RGB-модели.

К какому цвету будет близок цвет страницы, заданный тэгом ?

1) белый 2) серый 3)желтый 4) фиолетовый

Решение: Самая высокая интенсивность цвета (99) у составляющих красного и синего цветов. Это дает фиолетовый цвет.

Ответ: 4

3. Какова ширина (в пикселях) прямоугольного 64-цветного неупакованного растрового изображения, занимающего на диске 1,5 Мбайт, если его высота вдвое меньше ширины?

Решение: Так как объем памяти на все изображение вычисляется по формуле (1), где – число бит на пиксель, а https://pandia.ru/text/78/419/images/image014_12.gif" width="36" height="41 src=">.

64=26 . Отсюда K = 6.

Подставим эти значения в формулу (1), получим:

*6=1.5*220*23. После сокращения: x 2 = 222. Отсюда: x = 211=2048.

О твет: 4

Задачи для тренировки:

1. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

2. Для кодирования цвета фона страницы Интернет используется атрибут bgcolor="#ХХХХХХ", где в кавычках задаются шестнадцатеричные значения интенсивности цветовых компонент в 24-битной RGB-модели. К какому цвету будет близок цвет страницы, заданной тэгом ?

1) желтый 2) розовый 3) светло-зеленый 4) светло-синий

3. Какова ширина (в пикселях) прямоугольного 16-цветного неупакованного растрового изображения, занимающего на диске 1 Мбайт, если его высота вдвое больше ширины?

Кодирование звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче, чем больше частота, тем выше тон. Для того, чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. При этом звуковая волна разбивается на мелкие временные участки, для каждого из которых устанавливается значение амплитуды.

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

На графике (см. рис.) это выглядит как замена гладкой кривой на последовательность ”ступенек”, каждой из которых присваивается значение уровня громкости. Чем большее количество уровней громкости будет выделено в процессе кодирования, тем более качественным будет звучание.

Рис. Временная дискретизация звука

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле Хартли: N = 2 I где I – глубина звука, а N – уровни громкости .

Современные звуковые карты обеспечивают 16-битную глубину кодировки звука. Количество различных уровней сигнала можно рассчитать по формуле: N=216=65536. Т. о., современные звуковые карты обеспечивают кодирование 65536 уровней сигнала. Каждому значению амплитуды присваивается 16-ти битный код.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, т. е. частотой дискретизации. Чем большее количество измерений проводится в 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Частота дискретизации количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

1 измерение за 1 секунду -1 ГЦ, 1000 измерений за 1 секунду 1 кГц.

Обозначим частоту дискретизации буквой F . Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц .

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Частота дискретизации аналогового звукового сигнала может принимать значения от 8 кГц до 48 кГц. При частоте 8 кГц качество дискретизованного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц – качеству звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стереорежимы.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I , то при измерении входного сигнала может быть получено 2 I = N различных значений.

Размер цифрового моноаудиофайла (A ) измеряется по формуле:

A =F* T * I /8 ,

где F – частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла (A ) измеряется по формуле:

A =2* F * T * I /8 ,

сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Пример. Попробуем оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 бит, 48 кГц). Для этого количество битов нужно умножить на количество выборок в 1 секунду и умножить на 2 (стерео):

16 бит*48 000 *2 = 1 536 000 бит = 192 000 байт = 187,5 Кбайт

В таблице1 показано, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

Тип сигнала

Частота дискретизация, КГц

16 бит, стерео

16 бит, моно

8 бит, моно

Примеры задач:

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A = F * T * I /8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A = F * T * I /8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: 220500

2. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?

Решение:

Формула для расчета частоты дискретизации и разрядности: F* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

2, 6 Мбайт= 26 байт

F* I =А/Т= 26 байт: 60 = 45438,3 байт

F=45438,3 байт: I

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

Ответ:

Частота дискретизации

Разрядность аудиоадаптера

1 вариант

2 вариант

3. Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Решение:

Формула для расчета длительности звучания: T=A/F/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц: 2 байта = 124,8 сек
Ответ: 124,8

4. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)?

Решение:

Формула для расчета объема памяти A = F * T * I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

Задачи для тренировки:

1) Производится одноканальная (моно) звукозапись с частотой дискретизации 22 кГц и глубиной кодирования 16 бит. Запись длится 2 минуты, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

2) Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и глубиной кодирования 24 бита. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

3) Проводилась одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. В результате был получен файл размером 3 Мбайт, сжатие данных не производилось. Какая из приведенных ниже величин наиболее близка к времени, в течение которого проводилась запись?

1) 30 сексексексек

4) Производится одноканальная (моно) звукозапись с частотой дискретизации 128 Гц. При записи использовались 64 уровня дискретизации. Запись длится 6 минут 24 секунд, её результаты записываются в файл, причём каждый сигнал кодируется минимально возможным и одинаковым количеством битов. Какое из приведённых ниже чисел наиболее близко к размеру полученного файла, выраженному в килобайтах?

5) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и глубиной кодирования 32 бит. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?



Понравилась статья? Поделитесь ей