Контакты

Схема генератор реактивной мощности 2 квт. Генератор обратной мощности. Коммутационный способ возбуждения параметрического резонанса электрических колебаний и устройство для его осуществления

Немногие, наверное, вспомнят, как раньше отматывали показания счетчика электроэнергии. Делали это трансформатором, который необходимо было заземлить. Заземлителем обычно служила батарея или другая коммуникация. Это было очень опасно для жизни. Теперь же никаких посторонних вмешательств в электрическую проводку и заземляющих проводников. Включил в обычную розетку генератор обратной мощности и жди результата. Обычный электросчетчик с диском – мотает цифры в обратную сторону, современный электронный счетчик – просто останавливается.

Расчет мощности по показаниям электросчетчика

Приборы для учета потребляемой энергии не всегда верно отсчитывают используемую мощность электронных компонентов. Для того, чтобы проверить работу электросчетчика необходимо:

  • иметь возможность осмотреть устройство. Электросчетчик может находиться в квартире или на лестничной площадке;
  • на передней панели указан класс точности прибора – это допустимая величина погрешности в %. Например, если класс точности 3, то устройство за использованный 100Вт/ч посчитает показатель – от 97 до 103 Вт/ч. Это будет нормой рассчитанного электричества для данного счетчика;
  • для проверки работы включите в сеть только одну лампу накаливания на один час, и смотрите за показаниями на электросчетчике.

Если Ваш прибор для учета электроэнергии не оправдал испытания – следует подать заявку на его замену в Энергонадзор.

Как рассчитать мощность электрического тока

Электрический счетчик рассчитывает не потребляемую электронными компонентами мощность, а работу, проделанную электрическим током, а правильнее – израсходованную при этом энергию. Рассчитать мощность электросчетчика можно двумя методами:

  • посчитать количество оборотов за единицу времени и сравнить этот показатель цифрой, указанной на счетчике. Например, если стоит показатель 300 , это значит, что диск прибора совершает 300 оборотов за один час. Значит за 10 минут он должен совершить 50 оборотов;
  • и наоборот: задаем количество оборотов и смотрим, за какое время счетчик проделает эту работу.

Расход электроэнергии

Для того, чтобы контролировать расход электроэнергии, необходимо знать точную цифру, потребляемую Вашими электроприборами. Число, показывающее на используемую мощность, указывается, обычно, в технических характеристиках электроустройства. Зная это число и возможные способы проверки этого показателя, можно контролировать расход электроэнергии. Или приобрести генератор обратной мощности электросчетчика и забыть о расчетах. Однако, следует заметить, что промышленностью выпускаются уже «умные» приборы для учета электричества, которые могут зафиксировать обман. Тогда серьезных проблем с Энергонадзором уже не избежать!

Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

Что представляет собой свободная энергия?

Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой. Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя. Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в . Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

Проблема сохранения энергии

Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности. Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора. С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

Схема и конструкция генератора Теслы

Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

Рис. 1: Генератор свободной энергии Тесла

Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

  • диаметр намотки;
  • сечения провода для каждой из обмоток;
  • расстояние между катушками.

Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в . А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.


Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­ H .

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Последователи Николы Теслы и их генераторы

Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

Лестер Хендершот

Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.


Рис. 3: общий вид генератора Хендершота

Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

Джон Бедини

Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.


Рис. 4: принципиальная схема генератора Бедини

Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

  • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
  • катушка с ферромагнитным основанием и двумя обмотками;
  • аккумулятор (в данном примере он был заменен на батарейку 9В);
  • блок управления из транзистора (Т), резистора (Р) и диода (Д);
  • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.


Рис. 5: начало работы генератора Бедини

Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.


Рисунок 6: запуск обмотки подзаряда

Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

Тариель Капанадзе

Капанадзе разрабатывал модель своего генератора свободной энергии в 80 – 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.


Рис. 7: принципиальная схема генератора Капанадзе

На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.

Практические схемы генераторов свободной энергии

Несмотря на большое количество существующих схем генераторов свободной энергии совсем немногие из них могут похвастаться реальными результатами, которые можно было бы проверить и повторить в домашних условиях.


Рис. 8: рабочая схема генератора Тесла

На рисунке 8 выше приведена схема генератора свободной энергии, которую вы можете повторить в домашних условиях. Этот принцип был изложен Николой Тесла, для его работы используется металлическая пластина, изолированная от земли и расположенная на какой-либо возвышенности. Пластина является приемником электромагнитных колебаний в атмосфере, сюда входит достаточно широкий спектр излучений (солнечных, радиомагнитных волн, статического электричества от движения воздушных масс и т.д.)

Приемник подключается к одной из обкладок конденсатора, а вторая обкладка заземляется, что и создает требуемую разность потенциалов. Единственным камнем преткновения к его промышленной реализации является необходимость изолировать на возвышенности пластину большой площади для питания хотя бы частного дома.

Современный взгляд и новые разработки

Несмотря на повсеместную заинтересованность созданием генератора свободной энергии, вытеснить с рынка классический способ получения электроэнергии они еще не могут. Разработчикам прошлого, выдвигавшим смелые теории по поводу значительного удешевления электроэнергии, не хватало технического совершенства оборудования или параметры элементов не могли обеспечить надлежащего эффекта. А благодаря научно-техническому прогрессу человечество получает все новые и новые изобретения, которые делают уже осязаемым воплощение генератора свободной энергии. Следует отметить, что сегодня уже получены и активно эксплуатируются генераторы свободной энергии, работающие на силе солнце и ветра.

Но, в то же время, в интернете вы можете встретить предложения о приобретении таких устройств, хотя в большинстве своем это пустышки, созданные с целью обмануть неосведомленного человека. А небольшой процент реально работающих генераторов свободной энергии, будь то на резонансных трансформаторах, катушках или постоянных магнитах, может справляться лишь с питанием маломощных потребителей, обеспечить электроэнергией, к примеру, частный дом или освещение во дворе они не могут. Генераторы свободной энергии – перспективное направление, но их практическая реализация все еще не воплощена в жизнь.

боюсь, что 20 евро были потрачены зря

Пожалуйста зарегистрируйся для просмотра данной ссылки на страницу.

Вариант №1. “Электронный. Генератор обратной (реактивной) мощности 1-5 КВт.”

Устройство для отмотки или торможения счетчика. Устройство включается в любую розетку, никакие вмешательства в электропроводку и заземление не нужны. Потребители питаются как обычно, генератор им не мешает. Но индукционный счетчик (с диском) при этом считает в обратную сторону, а электронные и электронно-механические останавливаются, что тоже неплохо. Устройство приводит к циркуляции мощности в двух направлениях через счетчик. В прямом направлении за счет высокочастотной модуляции тока осуществляется частичный учет, а в обратном – полный. Поэтому счетчик воспринимает работу устройства как источник энергии, питающий из Вашей квартиры всю электрическую сеть. Счетчик при этом считает в обратную сторону со скоростью, равной разности полного и частичного учета. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию. Если мощность потребителей окажется большей, чем обратная мощность устройства, то счетчик будет вычитать последнюю из мощности потребителей. Устройство заставляет счетчик считать в обратную сторону со скоростью до 5 кВт в час (в зависимости от выбранной Вами мощности отмотки, в инструкции приведены все данные для сбора устройства с мощностью отмотки 1, 2, 3 , 4 и 5 КВт, приведена спецификация элементов, принципиальная схема, и полный перечень элементов для всех вариантов мощности). Устройство построено всего на двух транзисторах, двух логических микросхемах серии К155, а также содержит десяток других распространенных деталей. Собрать и настроить его cможет радиолюбитель и без большого опыта. Если счетчик оборудован внешними трансформаторами тока и есть возможность подключиться к их вторичным обмоткам, то мощность отмотки умножается на коэффициент трансформации. Например, если трансформатор тока ТТ - 0,38 1000/5, один генератор обеспечит скорость отмотки 1000 кВт*час. Можно применить три генератора, по одному на каждую фазу. Будет тройной эффект. Применим для трехфазного счетчика. При включении в розетку будет вычитать заданную мощность(1-5 КВт) из общей мощности учета на фазе, к которой подключен.

Особенности.

Положительные: Не нужно никакое вмешательство в электропроводку. Вся электропроводка остается нетронутой. Заземление не нужно. Можно применять устройство для как однофазных счетчиков при напряжении 220В, так и для трехфазных 380В, просто включая в любую розетку после счетчика. Потребители с генератором не связаны. Устройство защитного отключения (УЗО) не мешает работе устройства.

Отрицательные: Необходимо собирать устройство... Достаточно высокая стоимость способа.

Стоимость документации с подробной иллюстрированной инструкцией, в которую входит электрическая принципиальная схема, инструкция по сборке и настройке, полный перечень всех используемых элементов и материалов: 500 рублей.

Предупреждение!

Уважаемые посетители сайта! В своих попытках отмотки или обмана счетчиков Вы скорее всего преуспеете, если уж поставили перед собой такую задачу! Но не забывайте достигнув успеха об осторожности и разумном расходовании природных ресурсов. Ведь после нас этим должны пользоваться еще и наши дети и внуки!!!

На этой странице будет представлено описание и предложена принципиальная схема несложного устройства для экономии электроэнергии , так называемый инвертор реактивной мощности . Устройство полезно при использовании, например, таких часто употребимых бытовых электроприборов, как бойлер, электродуховка, электрочайник и других, в том числе не нагревательных электронных устройств, телевизор, компьютер и др. Устройство может использоваться с любыми счетчиками, в том числе и сэлектронными, даже имеющими в качестве датчика шунт или воздушный трансформатор. Устройство просто вставляется в розетку 220 В 50 Гц и от него питается нагрузка, при этом вся электропроводка остается нетронутой. Заземление не требуется. Счетчик при этом будет учитывать примерно четверть потребленной электроэнергии .

Получить рабочую схему данного устройства с указанием номиналов элементов и подробной инструкцией по сборке и настройке можно .

Немного теории . При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно интеграл, от нее будет иметь нулевое значение, и счетчик ничего не будет считать. Иными словами попробуйте включить любой неполярный конденсатор после счетчика. Вы увидите, что на него счетчик никак не реагирует. Причем, независимо от емкости. Принцип работы инвертора, простой, как двери и состоит в использовании 2-х конденсаторов, первый из которых заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго - разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется.

Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток потребляемый от сети- почти синусоидальный, только его апроксимирующая функция опережает по фазе напряжение. Следовательно счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз 90 градусов не возможно, так, как заряд каждого конденсатора завершается за четверть периода сетевого напряжения, но апроксимирующая функция тока через электрощетчик при правильно подобранных параметрах емкости конденсаторов и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии. Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр, чтобы приблизить форму питающего напряжения к правильной синусоиде.

Проще говоря инвертор представляет собой несложное электронное устройство, преобразующее реактивную мощность в активную (полезную). Устройство включается в любую розетку, а от него питается мощный потребитель (или группа потребителей). Оно сделано таким образом, что потребляемый им ток по фазе опережает напряжение на 45..70 градусов. Поэтому счетчик воспринимает устройство как емкостную нагрузку и не учитывает большую часть фактически потребленной энергии. Устройство, в свою очередь, инвертируя полученную неучтенную энергию, питает потребители переменным током. Инвертор рассчитан на номинальное напряжение 220 В и мощность потребителей до 5 кВт. При желании мощность может быть увеличена. Главным достоинством устройства является то, что оно одинаково хорошо работает с любыми счетчиками, в том числе с электронными, электронно-механическими и даже новейшими, которые имеют в качестве датчика тока шунт или воздушный трансформатор. Вся электропроводка остается нетронутой. Заземление не нужно. Схема представляет собой мост на базе четырех тиристоров с несложной схемой управления. Собрать и настроить устройство можно самостоятельно, имея даже небольшой радиолюбительский опыт.

Рассказать в:

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону. Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства. Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Принципиальная схема приведена на рис.1. Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1. Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1. Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол p/2. Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1. Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством. Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд. Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства. Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается! Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21. Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс. Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада. После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим. Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку. Раздел.



Понравилась статья? Поделитесь ей