Контакты

Технология измерения ферромагнитными зондами. Магнитометрия В простейшем варианте феррозонд состоит из ферромагнитного сердечника и находящихся на нем двух катушек

Электромагнитные явления в трансформаторе со стальным сердечником по­добны явлениям в воздушном трансформаторе, но магнитный поток, который пронизывает обе обмотки, замыкается не по воздуху, а через стальной сердечник (рис.15.31).

При нагрузке трансформатора существуют три магнитных потока: Ф – ос­новной в сердечнике, Ф σ 1 – рассеяния, связанный только с первичной обмоткой, Ф σ 2 – рассеяния, связанный только со вторичной обмоткой.

Основной магнитный поток наводит в первичной и вторичной обмотках э.д.с. соответственно е 1 и е 2 . Магнитные потоки рассеяние Ф σ 1 и Ф σ 2 наводят в первич­ной и вторичной обмотках э.д.с. соответственно е σ 1 и е σ 1 .

Напряжение u 1 , приложенное к первичной обмотке, уравновешивается паде­нием напряжения на активном сопротивлении обмотки и электродвижущими си­лами е σ 1 и е σ 1 , т.е.

Рассмотрим сначала идеальный трансформатор, в котором r 1 = 0; x σ 1 = 0; r 2 = 0; x σ 2 = 0; w 1 = w 2 .

При холостом ходе такой трансформатор не отличается от обычной идеальной катушки и может быть изображён схемой замещения (рис.15.33).

r м

Построим векторную диаграмму идеального трансформатора при холостом ходе (рис.15.34).

Намагничивающая сила при холостом ходе

Составим теперь схему замещения идеального трансформатора при его на­грузке (рис.15.35).

Если к зажимам вторичной обмотки подключить нагрузку с сопротивлением Z н , то в ней будет проходить ток , который, в свою очередь, будет стремиться уменьшить магнитный поток, а это приведёт к уменьшению э.д.с., вследст­вие чего ток возрастёт до такой величины, при которой магнитный поток при­обретёт первоначальное значение и будет выполняться уравнение (15.35).

Та­ким образом, появление тока во вторичном контуре приводит к увеличению тока в первичном контуре. В нагруженном трансформаторе магнитный поток в сердечнике равен маг­нитному потоку при холостом ходе, т.е. всегда Ф = const. При нагрузке магнитный поток создаётся под действием намагничиваю­щих сил первичной и вторичной обмоток:

.

Построим векторную диаграмму идеального трансформатора при нагрузке (рис.15.36).

Преобразуем схему замещения идеального трансформатора, для чего изба­вимся от индуктивной связи. Если соединить одноимённые зажимы обмоток трансформатора между собой, то режим работы трансформатора не изменится.

Рассмотрим сначала индуктивно связанные элементы, которые теперь имеют общую точку. Коэффициент связи двух элементов в данном случае равен единице, поскольку весь магнитный поток полностью сцеплен с витками первичной и вто­ричной обмоток, т.е.

,

поэтому, учитывая, что w 1 = w 2 , находим:

.

Заменим теперь часть схемы с индуктивно связанными элементами с общей точкой (рис.15.37а ) на эквивалентную схему без индуктивной связи (рис.15.37б ).

;

;

С учётом найденного схема принимает вид, показанный на рис.15.37в , а схема замещения идеального трансформатора – вид, изображённый на рис.15.38.

Если теперь учесть активные и индуктивные сопротивления рассеяния обеих обмоток, то для трансформатора, у которого w 1 = w 2 , получим схему замещения, приведенную на рис.15.39.

Запишем уравнения первичного и вторичного контуров цепи:

;

Построим векторную диаграмму цепи (рис.15.40).

Этот прибор измеряет магнитное поле Земли в конкретной точке. При перемещении прибора вблизи ферромагнитных материалов (в нашем случае сталь, чугун), фиксируется изменение магнитного поля по сравнению с фоновым. Приборы этой группы подходят для поиска крупных чугунных и стальных объектов (танки, паровозы, автомобили). Из принципа работы магнитометра вытекает следующая особенность: степень искажения магнитного поля зависит, в основном, от массы объекта. Таким образом, на танк и на стопку рельс такого же веса магнитометр сработает одинаково. Следовательно, магнитометр подходит и для поиска складов оружия и боеприпасов. На цветные металлы магнитометр не реагирует.

Основные понятия

Магнитометр - прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов). В зависимости от определяемой величины, различают приборы для измерения: напряжённости поля (эрстедметры), направления поля (инклинаторы и деклинаторы), градиента поля (градиентометры), магнитной индукции (тесламетры), магнитного потока (веберметры, или флюксметры), коэрцитивной силы (коэрцитиметры), магнитной проницаемости (мю-метры), магнитной восприимчивости (каппа-метры), магнитного момента.

В поисковых целях используются тесламетры и градиентометры . Основная идея использования магнитометра для поиска железосодержащих объектов заключается в следующем. Как известно, Земля обладает собственным магнитным полем. Величина и направление этого поля практически постоянны на достаточно больших площадях. Однако, вблизи ферромагнитного объекта магнитное поле изменяется, как по направлению, так и по величине. Зафиксировав с помощью магнитометра изменение магнитного поля, подобный объект можно обнаружить. Мало того, применяя методы расчета, используемые в геофизике, можно расчитать размеры объекта и глубину, на которой он находится.

Что говорит нам геофизика? На полюсах вертикальные составляющие магнитной индукции примерно равны 60 мкТл, а горизонтальные - нулю. На экваторе горизонтальная составляющая приблизительно равна 30 мкТл, а вертикальная - нулю. Еще некоторые цифры: железный объект весом 1 фунт (453 грамма), на расстоянии 3 м изменяет магнитное поле на 1 нТл. Таким образом, приличный магнитометр должен измерять магнитное поле в пределах 30 000 - 60 000 нТл с точностью до 1 нТл.

Принцип работы

Основные датчики, применяемые в магнитометрах:

Принцип действия оптико-механических магнитометров аналогичен работе компаса. Чувствительным элементом (датчиком) таких приборов служит постоянный магнит, который может свободно вращаться. В зависимости от ориентации оси вращения постоянного магнита, его магнитного момента и напряженности магнитного поля Земли постоянный магнит занимает определенное положение относительно горизонтальной или вертикальной плоскости. Изменение напряженности магнитного поля Земли приводит к соответствующему изменению угла наклона постоянного магнита (при прочих равных условиях). Для повышения точности определения угла наклона системы применяют специальные оптические устройства.Для снижения погрешности при ориентации по магнитному меридиану используют компенсационный способ измерений. Для этого в приборе имеется компенсационный магнит, жестко связанный с отсчетной шкалой. Плавная компенсация осуществляется вращением этого магнита до тех пор, пока постоянный магнит не установится горизонтально. Момент компенсации фиксируется с помощью особой оптической системы путем совмещения отраженного от зеркала на магните и неподвижного горизонтального индексов. Для расширения пределов измерения ΔZ существует второй, так называемый диапазонный магнит ступенчатой компенсации. Погрешность измерений таким прибором составляет 2—5 нТл.

Основой конструкции феррозонда (чувствительного элемента) феррозондового магнитометра служит электрическая катушка, намотанная на удлиненный стержень из ферромагнетика, обладающего малой коэрцитивной силой и большой магнитной проницаемостью в слабых магнитных полях (например, из сплава железа и никеля — пермаллоя). В отсутствие внешнего магнитного поля при пропускании через генераторную (первичную) катушку переменного электрического тока частотой f и амплитудой, достаточной для создания поля возбуждения, превышающего уровень насыщения сердечника, в измерительной (вторичной) катушке возникает ЭДС удвоенной частоты 2f. При наличии внешнего постоянного магнитного поля, составляющая которого вдоль оси стержня отлична от нуля, в наведенной ЭДС будет преобладать частота, совпадающая с частотой поля возбуждения f. Феррозонд магнитометра состоит из двух одинаковых пермаллоевых стержней, расположенных параллельно друг другу и ориентированных вдоль измеряемой составляющей магнитного поля Земли. Обмотки катушек возбуждения соединены последовательно таким образом, чтобы переменное поле в двух сердечниках было направлено противоположно. Для измерения внешнего магнитного поля (его составляющей, направленной вдоль оси стержней) обычно используют компенсационный метод, заключающийся в компенсации постоянного магнитного поля Земли полем постоянного регулируемого тока. По величине тока компенсации судят о напряженности магнитного поля Земли вдоль оси феррозонда. К таким приборам относится аэромагнитометр АМФ-21. За счет погрешности в ориентировке феррозонда погрешность съемки таким магнитометром достигает десятков нанотесл. При скважинных работах применяют скважинный вариант ферромагнитометра (например, ТСМК-30), позволяющего измерять составляющие магнитного поля AZ, АХ, АУ с погрешностью до ± 100 нТл.

Фирмой Precision Navigation Inc. (США) разработан усовершенствованный вариант феррорезонансного датчика, который получил наименованиемагнитоиндуктивного датчика - Magneto-Inductive (MI) sensors. Датчик представляет собой микроминиатюрную катушку индуктивности с ферромагнитным сердечником. Катушка содержит всего одну обмотку и регистрирует магнитное поле в направлении только одной из осей.

Датчик Холла работает, примерно, следующим образом (см. рисунок): если через полупроводниковую пластину в направлении A-B пропустить ток, то при наличии магнитного поля напряженностью H, направленного перпендикулярно плоскости пластины, на краях пластины E-F возникнет ЭДС. Величина, ЭДС зависит от напряженности магнитного поля. Чувствительность магнитометров с датчиками Холла порядка 10 нТл.

магниторезистор

Магниторезистор (см. рис.) содержит полупроводниковую пластину 2, расположенную на подложке 1 из анизотропного высокоэффективного ферромагнетика. Принцип работы магниторезистора заключается в следующем: в ферромагнетике сформирована доменная структура, по крайней мере, из двух доменов. Намагниченности в доменах нормальны плоскости подложки и противоположны одна другой. Пластина располагается вдоль доменов с одинаковым направлением намагниченности. Доменные структуры ферромагнитной подложки создают начальное магнитное поле в полупроводниковой пластине, увеличивая ее удельное сопротивление и смещая рабочую точку. При помещении магниторезистора в измеряемое магнитное поле, оно приводит к дополнительному изменению удельного сопротивления. Порог чувствительности магниторезисторов составляет около 0,1 нТл.

Принцип действия протонных или ядерных магнитометров основан на явлении свободной прецессии протонов в земном магнитном поле. После определенного электромагнитного воздействия на протонсодержащий датчик протоны прецессируют вокруг направления земного магнитного поля с угловой скоростью ω, пропорциональной полной напряженности магнитного поля Земли Т: ω = aT, где a — коэффициент пропорциональности, который равен гиромагнитному отношению ядра (отношению магнитного момента ядра к механическому). Протонный магнитометр состоит из магниточувствительного блока или датчика (протонсодержащий сосуд с водой, спиртом, бензолом и т. п., вокруг которого намотаны возбуждающая и измерительная катушки); соединительных проводов; электронного блока (предусилитель, схема коммутации, умножитель частоты, частотомер и световой индикатор); регистрирующего устройства и блока питания. Рабочий цикл, т. е. время определения значений магнитного поля в каждой точке, складывается из времени поляризации датчика (для воды оно составляет 3— 8 с), времени переключения датчика и времени определения частоты сигнала, наведенного в катушке датчика (0,1—0,4 с). В зависимости от протонсодержащего вещества и точности определения частоты прецессии рабочий цикл составляет 1—10 с. При небольшой скорости движения носителя магнитометра (наземный или морской варианты) данные о магнитном поле Земли Т получают практически непрерывно. При большой скорости, например при скорости самолета 350 км/ч, расстояние между замерами составляет 300 м. С помощью протонного магнитометра можно проводить магнитную съемку с использованием металлических носителей — кораблей или самолетов, обладающих собственным магнитным полем. При этом датчик магнитометра буксируют на кабеле, длина которого должна в несколько раз превышать продольные размеры носителя. С помощью протонного магнитометра дискретно (1 раз в 1—10 с) измеряют абсолютное значение магнитной индукции геомагнитного поля с погрешностью ± 1—2 нТл при низкой чувствительности (±45°) к ориентации датчика по магнитному меридиану, независимости от температуры и времени (отсутствует смещение нуля). Протонные магнитометры используют при наземных (например, отечественный магнитометр ММП-203) и морских (ММП-3) съемках, реже при воздушных съемках (МСС-214) и скважинных наблюдениях.

В квантовых магнитометрах , предназначенных для измерения абсолютных значений модуля индукции магнитного поля, используют так называемый эффект Зеемана. В электронной структуре атомов, обладающих магнитным моментом, при попадании в магнитное поле происходит расщепление энергетических уровней на подуровни, с разницей энергии и, соответственно, частотой излучения пропорциональной модулю полного вектора магнитной индукции в точке наблюдения. Чувствительным элементом магнитометра является сосуд, в котором имеются пары цезия, рубидия или гелия. В результате вспышки монохроматического света (метод оптической накачки) электроны паров переводятся с одного энергетического подуровня на другой. Возвращение их на прежний уровень после окончания накачки сопровождается излучением энергии с частотой, пропорциональной величине магнитного поля. С помощью квантового магнитометра измерения Т проводят с погрешностью ±(0,1—1) нТл при слабой чувствительности к ориентации датчика, высоком быстродействии и стабильности показаний (незначительное смещение нуля). Основными отечественными квантовыми магнитометрами являются приборы следующих марок: наземные (пешеходные) М-33 и ММП-303, морской КМ-8, аэромагнитометр КАМ-28. В магнитометрах для съемки в движении (морских, воздушных или автомобильных) регистрацию магнитной индукции ведут автоматически, практически непрерывно. Профили привязывают различными способами (радионавигационными, с помощью аэрофотосъемок и т. п.). Результаты наблюдений представляют иногда в аналоговой форме в виде магнитограмм, но чаще - в цифровой форме, обеспечивающей последующую обработку информации на бортовых ЭВМ или в экспедиционных вычислительных центрах.


Феррозондовый преобразователь магнитного поля, или феррозонд, предназначен для измерения и индикации постоянных и медленно меняющихся магнитных полей и их градиентов. Действие феррозонда основано на изменении магнитного состояния ферромагнетика под воздействием двух магнитных полей разных частот.
На рис. схематически показаны некоторые варианты конструкций феррозондов.
В простейшем варианте феррозонд состоит из ферромагнитного сердечника и находящихся на нем двух катушек:

    катушки возбуждения, питаемой переменным током

    и измерительной (сигнальной) катушки.

Сердечник феррозонда выполняется из материалов с высокой магнитной проницаемостью.
На катушку возбуждения от специального генератора подается переменное напряжение с частотой от 1 до 300 кГц (в зависимости от уровня параметров и назначения прибора).
В отсутствие измеряемого магнитного поля сердечник под действием переменного магнитного поля Н, создаваемого током в катушке возбуждения, перемагничивается по симметричному циклу.
Изменение магнитного поля, вызванное перемагничиванием сердечника по симметричной кривой, индуцирует в сигнальной катушке ЭДС, изменяющуюся по гармоническому закону.
Если одновременно на сердечник действует измеряемое постоянное или медленно меняющееся магнитное поле Но, то кривая перемагничивания меняет свои размеры и форму и стано- вится несимметричной. При этом изменяется величина и гармонический состав ЭДС в сигнальной катушке.
В частности, появляются четные гармонические составляющие ЭДС, величина которых пропорциональна напряженности измеряемого поля и которые отсутствуют при симметричном цикле перемагничивания.
Феррозонды подразделяются на:

    стержневые одноэлементные (рис. а)

    Дифференциальные с разомкнутым сердечником (рис.б)

    Дифференциальные с замкнутым (кольцевым) сердечником (рис.в).

Дифференциальный феррозонд (рис. б, в), как правило, состоит из двух сердечников с обмотками, которые соединены так, что нечетные гармонические составляющие практически компенсируются. Тем самым упрощается измерительная аппаратура и повышается чувствительность феррозонда.
Феррозонды отличаются очень высокой чувствительностью к магнитному полю.
Они способны регистрировать магнитные поля с напряженностью до 10 -4 -10 -5 А/м (~10 -10 -10 -11 Тл).
Современные конструкции феррозондов отличаются компактностью.
Объем феррозонда, которым комплектуются отечественные магнитометры Г73, составляет менее 1 см 3 , а трехкомпонентный феррозонд для магнитометра Г74 вписывается в куб со стороной 15 мм.
В качестве примера на рис. приведена конструкция и габариты миниатюрного стержневого феррозонда.
Конструкция феррозонда достаточно проста и не требует особых пояснений.
Его сердечник изготовлен из пермаллоя.
Он имеет переменное по длине поперечное сечение, уменьшающееся примерно в 10 раз в центральной части сердечника, на которую намотаны измерительная обмотка и обмотка возбуждения.

Такая конструкция обеспечивает при сравнительно небольшой длине (30 мм) высокую магнитную проницаемость (1, 5x10 5) и малое значение напряженности поля насыщения в центральной части сердечника, что приводит к увеличению фазовой и временной чувствительности феррозонда. За счет этого улучшается и форма выходных импульсов в измерительной обмотке феррозонда, что позволяет снизить погрешности схемы формирования сигнала «время-импульс».

Диапазон измерения феррозондовых преобразователей типовой конструкции составляет ±50... ±100 А/м (±0, 06... ±0, 126 мТл).
Плотность магнитного шума в полосе частот до 0,1 Гц для феррозондов со стержневыми сердечниками составляет 30 - 40 мкА/м (м x Гц 1/2) в зависимости от поля возбуждения, уменьшаясь с увеличением последнего. В полосе частот до 0,5 Гц плотность шума оказывается в 3 - 3,5 раза выше.

Магнитометр предназначен для измерения индукции магнитного поля. В магнитометре используется опорное магнитное поле, которое позволяет посредством тех или иных физических эффектов преобразовать измеряемое магнитное поле в электрический сигнал .
Прикладное применение магнитометров для обнаружения массивных объектов из ферромагнитных (чаще всего, стальных) материалов основано на локальном искажении этими объектами магнитного поля Земли. Преимуществом использования магнитометров в сравнении с традиционными металлодетекторами состоит в большей дальности обнаружения .

Феррозондовые (векторные) магнитометры

Одним из видов магнитометров являются . Феррозонд был изобретен Фридрихом Фёрстером ()

В 1937 году и служит для определения вектора индукции магнитного поля .

Конструкция феррозонда

одностержневой феррозонд

Простейший феррозонд состоит из пермаллоевого стержня, на котором размещена катушка возбуждения ((drive coil ), питаемая переменным током, и измерительная катушка (detector coil ).

Пермаллой - сплав с магнитно-мягкими свойствами, состоящий из железа и 45-82 % никеля. Пермаллой обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость ~100 000) и малой коэрцитивной силой. Популярной маркой пермаллоя для изготовления феррозондов является 80НХС - 80 % никеля + хром и кремний с индукцией насыщения 0,65-0,75 Тл, применяется для сердечников малогабаритных трансформаторов, дросселей и реле, работающих в слабых полях магнитных экранов, для сердечников импульсных трансформаторов, магнитных усилителей и бесконтактных реле, для сердечников магнитных головок.
Зависимость относительной магнитной проницаемости от напряженности поля для некоторых сортов пермаллоя имеет вид -

Если на сердечник накладывается постоянное магнитное поле, то в измерительной катушке появляется напряжение четных гармоник, величина которого служит мерой напряженности постоянного магнитного поля. Это напряжение отфильтровывается и измеряется.

двухстержневой феррозонд

В качестве примера можно привести устройство, описанное в книге Каралиса В.Н. "Электронные схемы в промышленности" -



Прибор предназначен для измерения постоянных магнитных полей в диапазоне 0,001 ... 0,5 эрстед.
Обмотки возбуждения датчика L1 и L3 включены встречно. Измерительная обмотка L2 намотана поверх обмоток возбуждения. Обмотки возбуждения питаются током частоты 2 кГц от двухтактного генератора с индуктивной обратной связью. Режим генератора стабилизируется по постоянному току делителем на резисторах R8 и R9 .

феррозонд с тороидальным сердечником
Одним из популярных вариантов конструкции феррозондового магнитометра является феррозонд с тороидальным сердечником (ring core fluxgate ) -

По сравнению со стержневыми феррозондами такая конструкция имеет меньшие шумы и требует создания намного меньшей магнитодвижущей силы .

Этот датчик представляет собой обмотку возбуждения , намотанную на тороидальном сердечнике, по которой протекает переменный ток с амплитудой, достаточной для ввода сердечника в насыщение, и измерительную обмотку , с которой снимается переменное напряжение, которое и анализируется для измерения внешнего магнитного поля.
Измерительная обмотка наматывается поверх тороидального сердечника, охватывая его целиком (например, на специальном каркасе) -


Эта конструкция аналогична первоначальной конструкции феррозондов (конденсатор добавлен для достижения резонанса на второй гармонике) -

Применение протонных магнитометров
Протонные магнитометры широко используются в археологических исследованиях.
Протонный магнитометр упоминается в научно-фантастической новелле Майкла Крайтона "В ловушке времени" ("Timeline ") -
He pointed down past his feet. Three heavy yellow housings were clamped to the front struts of the helicopter. "Right now we’re carrying stereo terrain mappers, infrared, UV, and side-scan radar.” Kramer pointed out the rear window, toward a six-foot-long silver tube that dangled beneath the helicopter at the rear. “And what’s that?” “Proton magnetometer.” “Uh-huh. And it does what?” “Looks for magnetic anomalies in the ground below us that could indicate buried walls, or ceramics, or metal.”


Цезиевые магнитометры

Разновидностью квантовых магнитометров являются атомные магнитометры на щелочных металлах с оптической накачкой.

цезиевый магнитометр G-858

Магнитометры Оверхаузера

Твердотельные магнитометры

Наиболее доступными являются магнитометры, встроенные в смартфоны. Для Android хорошим приложением, использующим магнитометр, является . Страничка этого приложения - http://physics-toolbox-magnetometer.android.informer.com/ .

Настройка магнитометров

Для тестирования феррозонда можно использовать . Катушки Гельмгольца используются для получения практически однородного магнитного поля. В идеальном случае они представляют собой два одинаковых кольцевых витка, соединенных между собой последовательно и расположенных на расстоянии радиуса витка друг от друга. Обычно катушки Гельмгольца состоят из двух катушек, на которых намотано некоторое количество витков, причем толщина катушки должна быть много меньше их радиуса. В реальных системах толщина катушек может быть сравнима с их радиусом. Таким образом, можно считать системой колец Гельмгольца две соосно расположенных одинаковых катушки, расстояние между центрами которых приблизительно равно их среднему радиусу. Такую систему катушек называют также расщепленный соленоид (split solenoid).

В центре системы имеется зона однородного магнитного поля (магнитное поле в центре системы в объеме 1/3 радиуса колец однородно в пределах 1% ), что может быть использовано для измерительных целей, для калибровки датчиков магнитной индукции и т. д.

Магнитная индукция в центре системы определяется как $B = \mu _0\,{\left({4\over 5}\right) }^{3/2} \, {IN\over R}$,
где $N$ – число витков в каждой катушке, $I$ – ток через катушки, $R$ – средний радиус катушки.

Также катушки Гельмгольца могут быть использованы для экранирования магнитного поля Земли. Для этого лучше всего использовать три взаимно перпендикулярные пары колец, тогда не имеет значения их ориентация.

Предлагаемый вашему вниманию дифференциальный магнитометр может быть очень полезен для поиска крупных железных предметов. Таким прибором практически невозможно искать клады, однако он незаменим при поиске неглубоко затонувших танков, кораблей и других образцов военной техники.

Принцип действия дифференциального магнитометра очень прост. Любой предмет из ферромагнетика искажает естественное магнитное поле Земли. К таким предметам относится все, изготовленное из железа, чугуна и стали. В значительной степени повлиять на искажение магнитного поля может и собственная намагниченность предметов, которая часто имеет место. Зафиксировав отклонение напряженности магнитного поля от фонового значения, можно сделать вывод о наличии вблизи измерительного прибора предмета из ферромагнитного материала.

Искажение магнитного поля Земли вдали от мишени мало, и оно оценивается по разности сигналов от двух разнесенных на некоторое расстояние датчиков. Поэтому прибор и назван дифференциальным. Каждый датчик измеряет сигнал, пропорциональный напряженности магнитного поля. Наибольшее распространение получили ферромагнитные датчики и датчики на основе магнетонной прецессии протонов. В рассматриваемом приборе используются датчики первого типа.

Основой ферромагнитного датчика (называемого также феррозондовым) является катушка с сердечником из ферромагнитного материала. Типовая кривая намагничивания такого материала хорошо известна из школьного курса физики и имеет с учетом влияния магнитного поля Земли следующий вид, показанный на рис. 29.

Рис. 29. Кривая намагничивания

Катушка возбуждается переменным синусоидальным сигналом несущей частоты. Как видно из рис. 29, смещение кривой намагничивания ферромагнитного сердечника катушки внешним магнитным полем Земли приводит к тому, что индукция поля и связанное с ним напряжение на катушке начинают искажаться несимметричным образом. Иными словами, напряжение датчика при синусоидальном токе несущей частоты будет отличаться от синусоиды более "приплюснутыми" верхушками полуволн. И искажения эти будут несимметричны. На языке спектрального анализа это означает появление в спектре выходного напряжения катушки четных гармоник, амплитуда которых пропорциональна напряженности магнитного поля смещения (поля Земли). Вот эти четные гармоники и надо "выловить".

Рис. 30. Дифференциальный ферромагнитный датчик

Прежде чем упомянуть естественным образом напрашивающийся для этой цели синхронный детектор, работающий с опорным сигналом удвоенной несущей частоты, рассмотрим конструкцию усложненного варианта ферромагнитного датчика. Он состоит из двух сердечников и трех катушек (рис. 30). По своей сути, это дифференциальный датчик. Однако для простоты далее в тексте не будем называть его дифференциальным, так как сам магнитометр и без того уже - дифференциальный (©).

Конструкция состоит из двух идентичных ферромагнитных сердечников с идентичными катушками, расположенными параллельно рядом друг с другом. По отношению к возбуждающему электрическому сигналу опорной частоты они включены встречно. Третья катушка представляет собой обмотку, намотанную поверх двух сложенных вместе первых двух катушек с сердечниками. При отсутствии внешнего смещающего магнитного поля электрические сигналы первой и второй обмоток симметричны и в идеальном случае действуют так, что выходной сигнал в третьей обмотке отсутствует, так как магнитные потоки через нее полностью компенсируются.

При наличии внешнего смещающего магнитного поля картина меняется. То один, то другой сердечник на пике соответствующей полуволны "залетает" в насыщение глубже, чем обычно вследствие добавочного воздействия магнитного поля Земли. В результате на выходе третьей обмотки появляется сигнал рассогласования удвоенной частоты. Сигналы основной гармоники в идеале там полностью компенсируются.

Удобство рассмотренного датчика заключается в том, что его катушки можно включить для повышения чувствительности в колебательные контура. Первую и вторую -в колебательный контур (или контура), настроенный на несущую частоту. Третью - в колебательный контур, настроенный на вторую гармонику.

Описанный датчик обладает ярко выраженной диаграммой направленности. Его выходной сигнал максимален при расположении продольной оси датчика вдоль силовых линий внешнего постоянного магнитного поля. Когда продольная ось перпендикулярна силовым линиям - выходной сигнал равен нулю.

Датчик рассмотренного типа, особенно совместно с синхронным детектором, может успешно работать как электронный компас. Его выходной сигнал после выпрямления пропорционален проекции вектора напряженности магнитного поля Земли на ось датчика. Синхронное детектирование позволяет узнать и знак этой проекции. Но даже и без знака - сориентировав датчик по минимуму сигнала, получим направление на запад или на восток. Сориентировав по максимуму - получим направление магнитной силовой линии поля Земли. В средних широтах (например, в Москве) она идет наклонно и "втыкается" в землю в направлении на север. По углу магнитного склонения можно приблизительно оценить географическую широту местности.

Дифференциальные ферромагнитные магнитометры имеют свои достоинства и недостатки. К достоинствам относится простота прибора, он не сложнее радиоприемника прямого усиления. К недостаткам относится трудоемкость изготовления датчиков - кроме аккуратности требуется абсолютно точное совпадение количества витков соответствующих обмоток. Погрешность один-два витка может сильно снизить возможную чувствительность. Другим недостатком является "компасность" прибора, т. е. невозможность полной компенсации поля Земли вычитанием сигналов от двух разнесенных датчиков. На практике это приводит к ложным сигналам при поворотах датчика вокруг оси, перпендикулярной продольной.

Практическая конструкция

Практическая конструкция дифференциального ферромагнитного магнитометра была реализована и испытана в макетном варианте без специальной электронной части для звуковой индикации, с использованием только микроамперметра с нулем посередине шкалы. Схема звуковой индикации может быть взята из описания металлоискателя по принципу "передача-прием". Прибор имеет следующие параметры.

Основные технические характеристики
Напряжение питания 15... 18 В
Потребляемый ток не более 50 мА
Глубина обнаружения:
пистолет 2 м
пушечный ствол 4 м
танк 6 м

Структурная схема

Рис. 31. Структурная схема дифференциального ферромагнитного магнитометра

Структурная схема показана на рис. 31. Стабилизированный кварцем задающий генератор выдает синхроимпульсы тактовой частоты для формирователя сигналов.

На одном его выходе присутствует меандр первой гармоники, поступающий на усилитель мощности, возбуждающий излучающие катушки датчиков 1 и 2. Другой выход формирует меандр опорной удвоенной тактовой частоты со сдвигом 90° для синхронного детектора. Разностный сигнал с выходных (третьих) обмоток датчиков усиливается в приемном усилителе и выпрямляется синхронным детектором. Выпрямленный постоянный сигнал можно регистрировать микроамперметром или описанными в предыдущих главах устройствами звуковой индикации.

Принципиальная схема

Принципиальная схема дифференциального ферромагнитного магнитометра изображена на рис. 32 - часть 1; задающий генератор, формирователь сигналов, усилитель мощности и излучающие катушки, рис. 33 - часть 2: приемные катушки, приемный усилитель, синхронный детектор, индикатор и блок питания.

Рис. 32. Принципиальная электрическая схема - часть I
ЗАДАЮЩИЙ ГЕНЕРАТОР (РИС. 32)

Задающий генератор собран на инверторах D1.1-D1.3. Частота генератора стабилизирована кварцевым или пье-зокерамическим резонатором Q с резонансной частотой 215 Гц = 32 кГц ("часовой кварц"). Цепь R1C1 препятствует возбуждению генератора на высших гармониках. Через резистор R2 замыкается цепь ООС, через резонатор Q -цепь ПОС. Генератор отличается простотой, малым потребляемым током, надежно работает при напряжении питания 3...15 В, не содержит подстроечных элементов и чересчур высокоомных резисторов. Выходная частота генератора - около 32 кГц.

ФОРМИРОВАТЕЛЬ СИГНАЛОВ (РИС. 32)

Формирователь сигналов собран на двоичном счетчике D2 и D-триггере D3.1. Тип двоичного счетчика непринципиален, главная его задача - поделить тактовую частоту на 2, на 4 и на 8, получив таким образом, меандры с частотами 16, 8 и 4 кГц соответственно. Несущая частота для возбуждения излучающих катушек-4 кГц. Сигналы с частотами 16 и 8 кГц, воздействуя на D-триггер D3.1, формируют на его выходе меандр удвоенной по отношению к несущей частоты 8 кГц, сдвинутый на 90° относительно выходного сигнала 8 кГц двоичного счетчика. Такой сдвиг необходим для нормальной работы синхронного детектора, так как такой же сдвиг имеет полезный сигнал рассогласования удвоенной частоты на выходе датчика. Вторая половинка микросхемы из двух D-триггеров - D3.2 в схеме не используется, но ее незадействованные входы должны обязательно быть подключены либо к логической 1, либо к логическому 0 для нормальной работы, что и изображено на схеме.

УСИЛИТЕЛЬ МОЩНОСТИ (РИС. 32)

Усилитель мощности с виду таким и не кажется и представляет всего лишь мощные инверторы D1.4 и D1.5, которые в противофазе раскачивают колебательный контур, состоящий из последовательно-параллельно включенных излучающих катушек датчика и конденсатора С2. Звездочка около номинала конденсатора означает, что его значение указано ориентировочно и что его надо подобрать при наладке. Незадействованный инвертор D1.6, чтобы не оставлять его вход неподключенным, инвертирует сигнал D1.5, но практически работает "вхолостую". Резисторы R3 и R4 ограничивают выходной ток инверторов на допустимом уровне и вместе с колебательным контуром образуют высокодобротный полосовой фильтр, благодаря чему форма напряжения и тока в излучающих катушках датчика практически совпадает с синусоидальной.

Рис. 33. Принципиальная электрическая схема - часть II. Приемный усилитель
ПРИЕМНЫЙ УСИЛИТЕЛЬ (РИС 33)

Приемный усилитель усиливает разностный сигнал, поступающий с приемных катушек датчика, образующих совместно с конденсатором СЗ колебательный контур, настроенный на удвоенную частоту 8 кГц. Благодаря подстроечно-му резистору R5 вычитание сигналов приемных катушек производится с некоторыми взвешивающими коэффициентами, которые могут изменяться перемещением движка резистора R5. Этим достигается компенсация неидентичностей параметров приемных обмоток датчика и минимизация его "компасности". Приемный усилитель двухкаскадный. Он собран на ОУ D4.2 и D6.1 с параллельной ОС по напряжению. Конденсатор С4 уменьшает усиление на высших частотах, предотвращая тем самым перегрузку усилительного тракта высокочастотными наводками от силовых сетей и других источников. Цепи коррекции ОУ - стандартные.

СИНХРОННЫЙ ДЕТЕКТОР (РИС. 33)

Синхронный детектор выполнен на ОУ D6.2 по типовой схеме. В качестве аналоговых ключей используется микросхема D5 КМОП мультиплексора-демультиплексора 8 на 1 (рис. 32). Его цифровой адресный сигнал перебирается только в младшем разряде, обеспечивая поочередную коммутацию точек К1 и К2 на общую шину. Выпрямленный сигнал фильтруется конденсатором С8 и усиливается ОУ D6.2 с одновременным дополнительным ослаблением не-отфильтрованных ВЧ составляющих цепями R14C11 и R13C9. Цепь коррекции ОУ - стандартная для использованного типа.

ИНДИКАТОР (РИС. 33)

Индикатор представляет собой микроамперметр с нулем посередине шкалы. В индикаторной части может с успехом использоваться схемотехника описанных ранее металлоискателей других типов. В том числе, в качестве индикатора можно использовать и конструктив металлоискателя по принципу электронного частотомера. В этом случае его LC-генератор заменяется на RC-генератор, а измеряемое выходное напряжение через резистивный делитель подается на частотозадающую цепь таймера. Подробнее об этом можно почитать на сайте Юрия Колоколова.

Микросхема D7 стабилизирует однополярное напряжение питания. С помощью ОУ D4.1 создается искусственная средняя точка питания, что позволяет использовать обычную двуполярную схемотехнику для ОУ. Керамические блокирующие конденсаторы С18-С21 смонтированы в непосредственной близости от корпусов цифровых микросхем D1, D2, D3, D5.

Типы деталей и конструкция

Типы использованных микросхем указаны в табл. 6.

Таблица 6. Типы использованных микросхем

Вместо микросхем серии К561 возможно использование микросхем серии К1561. Можно попытаться применить некоторые микросхемы серии К176 или зарубежные аналоги серий 40ХХ и 40ХХХ.

Сдвоенные операционные усилители (ОУ) серии К157 можно заменить любыми сходными по параметрам ОУ общего назначения (с соответствующими изменениями в цоколевке и цепях коррекции).

К применяемым в схеме дифференциального магнитометра резисторам не предъявляется особых требований. Они лишь должны иметь прочную и миниатюрную конструкцию и быть удобны для монтажа. Номинал рассеиваемой мощности 0,125...0,25 Вт.

Потенциометры R5, R16 желательны многооборотные для удобства точной настройки прибора. Рукоятка потенциометра R5 должна быть изготовлена из пластика и должна иметь достаточную длину, чтобы прикосновения руки оператора при настройке не вызывали изменения показаний индикатора за счет наводок. Конденсатор С16 - электролитический любого малогабаритного типа.

Конденсаторы колебательных контуров С2* и СЗ* состоят из нескольких (5-10 шт.) конденсаторов, включенных параллельно. Настройка контура в резонанс осуществляется подбором количества конденсаторов и их номинала. Рекомендуемый тип конденсаторов К10-43, К71-7 или зарубежные термостабильные аналоги. Можно попытаться использовать обычные керамические или металлопленоч-ные конденсаторы, однако, при колебаниях температуры придется чаще подстраивать прибор.

Микроамперметр - любого типа на ток 100 мкА с нулем посередине шкалы. Удобны малогабаритные микроамперметры, например, типа М4247. Можно использовать практически любой микроамперметр, и даже миллиамперметр - с любым пределом шкалы. Для этого надо соответствующим образом скорректировать номиналы резисторов R15-R17. Кварцевый резонатор Q - любой малогабаритный часовой кварц (аналогичные используются также в портативных электронных играх).

Выключатель S1 - любого типа, малогабаритный.

Рис. 34. Конструкция датчика-антенны

Катушки датчика выполнены на круглых ферритовых сердечниках диаметром 8 мм (используются в магнитных антеннах радиоприемников СВ- и ДВ-диапазонов) и длиной около 10 см. Каждая обмотка состоит из ровно и плотно намотанных в два слоя 200 витков медного обмоточного провода диаметром 0,31 мм в двойной лаково-шелковой изоляции. Поверх всех обмоток крепится слой фольги экрана. Края экрана изолируются друг от друга для предотвращения образования короткозамкнутого витка. Вывод экрана выполняется медным луженым одножильным проводом. В случае экрана из алюминиевой фольги этот вывод накладывается на экран на всю его длину и плотно приматывается изолентой. В случае экрана из медной или латунной фольги вывод припаивается.

Концы ферритовых сердечников закреплены во фторопластовых центрирующих дисках, благодаря которым каждая из двух половинок датчика удерживается внутри пластиковой трубы из текстолита, служащей корпусом, как это схематически изображено на рис. 34. Длина трубы - около 60 см. Каждая из половинок датчика расположена у конца трубы и дополнительно фиксируется силиконовым гермети-ком, которым заполняется пространство вокруг обмоток и их сердечников. Заполнение осуществляется через специальные отверстия в корпусе-трубе. Совместно с фторопластовыми шайбами такой герметик придает креплению хрупких ферритовых стержней необходимую упругость, препятствующую их растрескиванию при случайных ударах.

Налаживание прибора

1. Убедиться в правильности монтажа.

2. Проконтролировать потребляемый ток, который не должен превышать 100 мА.

3. Проверить правильность работы задающего генератора и остальных элементов формирования импульсных сигналов.

4. Настроить колебательные контура датчика. Излучающий - на частоту 4 кГц, приемный - на 8 кГц.

5. Убедиться в правильности работы усилительного тракта и синхронного детектора.

Работа с прибором

Методика настройки и работы с прибором следующая. Выходим в место поисков, включаем прибор и начинаем вращать антенну-датчик. Лучше всего в вертикальной плоскости, проходящей через направление север-юг. Если датчик прибора на штанге, то можно не вращать, а раскачивать насколько это позволяет делать штанга. Стрелка индикатора будет отклоняться (компасный эффект). С помощью переменного резистора R5 пытаемся минимизировать амплитуду этих отклонений. При этом будет "съезжать" средняя точка показаний микроамперметра и ее надо будет тоже подстраивать другим переменным резистором R16, который предназначен для установки нуля. Когда "компасный" эффект станет минимальным, прибор считается отбалансированным.

Для малых объектов методика поисков с помощью дифференциального магнитометра не отличается от методики работы с обычным металлоискателем. Возле объекта стрелка может отклониться в любую сторону. Для больших объектов стрелка индикатора будет отклоняться в разные стороны на большом пространстве.



Понравилась статья? Поделитесь ей