Контакты

Презентация по информатике "компьютерное информационное моделирование". Презентация на тему "компьютерные модели" Компьютерное моделирование презентация по информатике

В настоящее время моделирование составляет неотъемлимую часть
современной фундаментальной и прикладной науки, причем по важности оно
приближается к традиционным экспериментальным и теоретическим методам
научного познания.
Цель курса - расширить представления студентов о моделировании как методе
научного познания, о использовании компьютера как инструмента научноисследовательской деятельности.
Процесс моделирования требует проведения математических вычислений,
которые в подавляющем большинстве случаев являются весьма сложными. Для
разработки программ, позволяющих моделировать тот или иной процесс, от
обучающихся потребуется не только знание конкретных языков
программирования, но и владение методами вычислительной математики. При
изучении данного курса представляется целесообразным использовать пакеты
прикладных программ для математических и научных расчетов,
ориентированные на широкий круг пользователей.

Компьютерное моделирование, возникшее как одно из направлений
математического моделирования с развитием информационных компьютерных
технологий стало самостоятельной и важной областью применения
компьютеров. В настоящее время компьютерное моделирование в научных и
практических исследованиях является одним из основных методов познания.
Без компьютерного моделирования сейчас невозможно решение крупных
научных и экономических задач. Выработана технология исследования сложных
проблем, основанная на построении и анализе с помощью вычислительной
техники математической модели изучаемого объекта.
Такой метод исследования называется вычислительным
экспериментом. Вычислительный эксперимент применяется практически во
всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в
таких сугубо гуманитарных науках как психология, лингвистика и филология,
кроме научных областей вычислительные эксперименты широко применяются в
экономике, в социологии, в промышленности, в управлении.

План вебинара:
1. Компьютерное моделирование как метод научного
познания
2. Классификация моделей
3. Основные понятия КМ
4. Этапы компьютерного моделирования

1. Компьютерное моделирование как метод научного познания
Курс Компьютерное моделирование - это новый и довольно сложный курс в
цикле информационных дисциплин. Постольку, поскольку курс КМ является
междисциплинарным курсом для его успешного освоения требуется наличие самых
разнообразных знаний: во-первых, знаний в выбранной предметной области - если
мы моделируем физические процессы, мы должны обладать определенным уровнем
знания законов физики, моделируя экологические процессы - биологических
законов, моделируя экономические процессы - знанием законов экономики, кроме
того, т.к. компьютерное моделирование использует практически весь аппарат
современной математики, предполагается знание основных математических
дисциплин - алгебры, матанализа, теории дифференциальных уравнений,
матстатистики, теории вероятности.
Для решения математических задач на компьютере необходимо владеть в
полном объеме численными методами решения нелинейных уравнений, систем
линейных уравнений, дифференциальных уравнений, уметь аппроксимировать и
интерполировать функции. И, конечно же, предполагается свободное владение
современными информационными технологиями, знание языков программирования
и владение навыками разработки прикладных программ.

Проведение вычислительного эксперимента имеет ряд преимуществ перед
так называемым натурным экспериментом:
- для ВЭ не требуется сложного лабораторного оборудования;
- существенное сокращение временных затрат на эксперимент;
- возможность свободного управления параметрами, произвольного их
изменения, вплоть до придания им нереальных, неправдоподобных
значений;
- возможность проведения вычислительного эксперимента там, где
натурный эксперимент невозможен из-за удаленности исследуемого
явления в пространстве (астрономия) либо из-за его значительной
растянутости во времени (биология), либо из-за возможности внесения
необратимых изменений в изучаемый процесс.

Также широко используется КМ в образовательных и учебных целях.
КМ - наиболее адекватный подход при изучении предметов
естественнонаучного цикла, изучение КМ открывает широкие возможности
для осознания связи информатики с математикой и другими науками естественными и социальными.
Учитель может использовать на уроке готовые компьютерные
модели для демонстрации изучаемого явления, будь это движение
астрономических объектов или движение атомов или модель молекулы или
рост микробов и т.д., также учитель может озадачить учеников разработкой
конкретных моделей, моделируя конкретное явление ученик не только освоит
конкретный учебный материал, но и приобретет умение ставить проблемы и
задачи, прогнозировать результаты исследования, проводить разумные оценки,
выделять главные и второстепенные факторы для построения моделей,
выбирать аналогии и математические формулировки, использовать компьютер
для решения задач, проводить анализ вычислительных экспериментов.
Таким образом, применение КМ в образовании позволяет сблизить
методологию учебной деятельности с методологией научно-исследовательской
работы, что должно быть интересно вам, как будущим педагогам.

2. Классификация моделей
В зависимости от средств построения различают следующие классы моделей:
- словесные или описательные модели их также в некоторой литературе называют
вербальными или текстовыми моделями (например, милицейский протокол с места
проишествия, стихотворение Лермонтова "Тиха украинская ночь");
- натурные модели (макет Солнечной системы, игрушечный кораблик);
- абстрактные или знаковые модели. Интересующие нас математические модели
явлений и компьютерные модели относятся как раз к этому классу.
Можно классифицировать модели по предметной области:
- физические модели,
- биологические,
- социологические,
- экономические и т.д.
Классификация модели по применяемому математическому аппарату:
- модели, основанные на применении обыкновенных дифференциальных уравнений;
- модели, основанные на применении уравнений в частных производных;
- вероятностные модели и т.д.

В зависимости от целей моделирования различают:
- Дескриптивные модели (описательные) описывают моделируемые объекты и
явления и как бы фиксируют сведения человека о них. Примером может служить
модель Солнечной системы, или модель движения кометы, в которой мы
моделируем траекторию ее полета, расстояние, на котором она пройдет от Земли
У нас нет никаких возможностей повлиять на движение кометы или движение
планет Солнечной системы;
- Оптимизационные модели служат для поиска наилучших решений при
соблюдении определенных условий и ограничений. В этом случае в модель
входит один или несколько параметров, доступных нашему влиянию, например,
известная задача коммивояжера, оптимизируя его маршрут, мы снижаем
стоимость перевозок. Часто приходится оптимизировать процесс по нескольким
параметрам сразу, причем цели могут быть весьма противоречивы, например,
головная боль любой хозяйки - как вкуснее, калорийнее и дешевле накормить
семью;
- Игровые модели (компьютерные игры);
- Обучающие модели (всевозможные тренажеры);
- Имитационные модели (модели, в которых сделана попытка более или менее
полного и достоверного воспроизведения некоторого реального процесса,
например, моделирование движения молекул в газе, поведение колонии
микробов и т.д.).

Существует также классификация моделей в
зависимости от их изменения во времени. Различают:
-Статические модели - неизменные во времени;
- Динамические модели - состояние которых меняется
со временем.

3. Основные понятия КМ
Модель - искусственно созданный объект, который воспроизводит в определенном
виде реальный объект - оригинал.
Компьютерная модель - представление информации о моделируемой системе
средствами компьютера.
Система - совокупность взаимосвязанных элементов, обладающих свойствами,
отличными от свойств отдельных элементов.
Элемент - это объект, обладающий свойствами, важными для целей моделирования.
В компьютерной модели свойства элемента представляются величинами характеристиками элемента.
Связь между элементами описывается с помощью величин и алгоритмов, в частности
вычислительных формул.

Состояние системы представляется в компьютерной модели набором
характеристик элементов и связей между элементами.
Структура данных, описывающих состояние, не зависит от конкретного
состояния и не меняется при смене состояний, меняется только значение
характеристик.
Если состояния системы функционально зависят от некоторого
параметра, то процессом называют набор состояний, соответствующий
упорядоченному изменению параметра.
Параметры в системе могут меняться как непрерывно, так и дискретно.
В компьютерной модели изменение параметра всегда дискретно. Непрерывные
процессы можно моделировать на компьютере, выбирая дискретную серию
значений параметра так, чтобы последовательные состояния мало чем
отличались друг от друга, или, другими словами, минимизируя шаг по времени.

Статистические модели - модели, в которых
предоставлена информация об одном состоянии системы.
Динамические модели - модели, в которых предоставлена
информация о состояниях системы и процессах смены
состояний. Оптимизационные, имитационные и
вероятностные модели являются динамическими моделями.
В оптимизационных и имитационных моделях
последовательность смены состояний соответствует
изменению моделируемой системы во времени. В
вероятностных моделях смена состояний определяется
случайными величинами.

4. Этапы компьютерного моделирования
Моделирование начинается с объекта изучения. На 1 этапе формируются законы,
управляющие исследованием, происходит отделение информации от реального
объекта, формируется существенная информация, отбрасывается несущественная,
происходит первый шаг абстракции. Преобразование информации определяется
решаемой задачей. Информация, существенная для одной задачи, может оказаться
несущественной для другой. Потеря существенной информации приводит к
неверному решению или не позволяет вообще получить решение. Учет
несущественной информации вызывает излишние сложности, а иногда создает
непреодолимые препятствия на пути к решению. Переход от реального объекта к
информации о нем осмыслен только тогда, когда поставлена задача. В тоже время
постановка задачи уточняется по мере изучения объекта. Т.о. на 1 этапе параллельно
идут процессы целенаправленного изучения объекта и уточнения задачи. Также на
этом этапе информация об объекте подготавливается к обработке на компьютере.

Строится так называемая формальная модель явления, которая содержит:
- Набор постоянных величин, констант, которые характеризуют моделируемый
объект в целом и его составные части; называемых статистическим или
постоянными параметрами модели;
- Набор переменных величин, меняя значение которых можно управлять
поведением модели, называемых динамическим или управляющими
параметрами;
- Формулы и алгоритмы, связывающие величины в каждом из состояний
моделируемого объекта;
- Формулы и алгоритмы, описывающие процесс смены состояний моделируемого
объекта.

На 2 этапе формальная модель реализуется на компьютере, выбираются
подходящие программные средства для этого, строиться алгоритм решения
проблемы, пишется программа, реализующая этот алгоритм, затем написанная
программа отлаживается и тестируется на специально подготовленных тестовых
моделях.
Тестирование - это процесс исполнения программы с целью выявления
ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого
разработаны и успешно применяются некоторые основные принципы
тестирования.
Тестирование - это процесс деструктивный, поэтому считается, что тест удачный,
если обнаружена ошибка. Проверить компьютерную модель на соответствие
оригиналу, проверить насколько хорошо или плохо отражает модель основные
свойства объекта, часто удается с помощью простых модельных примеров, когда
результат моделирования известен заранее.

На 3 этапе, работая с компьютерной моделью мы осуществляем непосредственно
вычислительный эксперимент. Исследуем, как поведет себя наша модель в том
или ином случае, при тех или иных наборах динамических параметров, пытаемся
прогнозировать или оптимизировать что-либо в зависимости от поставленной
задачи.
Результатом компьютерного эксперимента будет являться информационная
модель явления, в виде графиков, зависимостей одних параметров от других,
диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени
и т.п.

Информационное моделирование на современном этапе развития
информатики невозможно без привлечения технических средств, прежде всего
компьютеров и средств телекоммуникаций, без использования программ и
алгоритмов, а также обеспечения условий применения указанных средств на
конкретном рабочем месте, т.е. достижений науки под названием эргономика.
Эргономика – это наука, изучающая взаимодействие человека и машины
в конкретных условиях производственной деятельности с целью
рационализации производства.
Требования эргономики состоят:
в оптимальном распределении функций в системе «человек–машина»;
рациональной организации рабочего места;
соответствии технических средств психофизиологическим, биомеханическим и
антропологическим требованиям;
создании оптимальных для жизнедеятельности и работоспособности человека
показателей производственной среды;
обязательном соблюдении санитарно-гигиенических требований
к условиям труда.

В.В. Васильев, Л.А. Симак, А.М. Рыбникова. Математическое и
компьютерное моделирование процессов и систем в среде
MATLAB/SIMULINK. Учебное пособие для студентов и аспирантов. 2008 год.
91 стр.
Компьютерное моделирование физических задач в
Microsoft Visual Basic. Учебник Author: Алексеев Д.В.
СОЛОН-ПРЕСС, 2009 г
Автор: Орлова И.В., Половников В.А.
Издательство: Вузовский учебник
Год: 2008

Анфилатов, В. С. Системный анализ в управлении [Текст]: учеб.пособие / В. С.
Анфилатов, А. А. Емельянов, А. А. Кукушкин; под ред. А. А. Емельянова. – М.:
Финансы и статистика, 2002. – 368 с.
Веников, В.А.. Теория подобия и моделирования [Текст] / В. А. Веников, Г. В.
Веников.- М.: Высш.шк., 1984. – 439 с.
Евсюков, В. Н. Анализ автоматических систем [Текст]: учебно-методическое
пособие для выполнения практических заданий / В. Н. Евсюков, А. М.
Черноусова. – 2-е изд., исп. – Оренбург: ИПК ГОУ ОГУ, 2007. - 179 с.
Зарубин, В. С. Математическое моделирование в технике [Текст]: учеб. для вузов /
Под ред. В. С.Зарубина, А. П. Крищенко. - М.: Изд-во МГТУ им.Н.Э.Баумана, 2001. –
496 с.
Колесов, Ю. Б. Моделирование систем. Динамические и гибридные системы [Текст]:
уч. пособие / Ю.Б. Колесов, Ю.Б. Сениченков. - СПб. : БХВ-Петербург, 2006. - 224 с.
Колесов, Ю.Б. Моделирование систем. Объектно-ориентированный подход [Текст] :
Уч. пособие / Ю.Б. Колесов, Ю.Б. Сениченков. - СПб. : БХВ-Петербург, 2006. - 192 с.
Норенков, И. П. Основы автоматизированного проектирования [Текст]: учеб.для
вузов / И. П. Норенков. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2000. – 360 с.
Скурихин, В.И. Математическое моделирование [Текст] / В. И. Скурихин, В. В.
Шифрин, В. В. Дубровский. - К.: Техника, 1983. – 270 с.
Черноусова, А. М. Программное обеспечение автоматизированных систем
проектирования и управления: учебное пособие [Текст] / А. М. Черноусова, В.
Н. Шерстобитова. - Оренбург: ОГУ, 2006. - 301 с.

Модель

некое упрощенное подобие реального объекта


  • В реальном времени оригинал

может уже не существовать, или

его нет в действительности


Причины, по которым прибегают к построению моделей:

2.Оригинал может иметь много свойств и взаимосвязей. Чтобы глубоко изучить какое-то свойство, полезно отказаться от менее существенных, вовсе не учитывая их


Причины, по которым прибегают к построению моделей:

3.Ориганил либо очень велик, либо очень мал

4. Процесс протекает очень быстро или очень медленно

5. Исследование объекта может привести к его разрушению


Моделирование

Процесс построения моделей для исследования и изучения объектов, процессов, явлений


Цель моделирования

Назначение будущей модели. Она определяет те свойства оригинала, которые должны быть воспроизведены в модели


Модели

Информационные

Материальные

(натурные)

Физическое подобие объекта

Описание объекта моделирования

Явления

Поведение

Процессы

Объекты

  • Гроза
  • Землетрясение
  • Экономические
  • Развитие Вселенной
  • Глобус
  • Игрушки
  • Макеты

МОДЕЛИРОВАНИЕ НАТУРНОЕ И ИНФОРМАЦИОННОЕ

Натурные модели

Информационные модели

Фотография

Видеофильм

Скульптура

моделирования

Производственный

Медицинская

карточка

Свойства модели зависят от цели моделирования. Модели одного и того же объекта будут разными, если они создаются для разных целей.


Типы информационных моделей

объектов и процессов

Вербальные

Графические

Математические

Табличные

Словесное описание на естественном языке

Карты

Чертежи

Графики

Графы

Объект-объект

Объект-свойство

Двоичные

Прочие

Описание на языке математики


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Информационная модель – совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром.

Одному и тому же объекту можно поставить в соответствие разные информационные модели (вербальные, математические, табличные, графические); все зависит от цели моделирования.

Математические

Табличные

Графические


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

модели

Вербальная модель – это письменное или устное представление информационной модели средствами естественного языка.

Примеры вербальных моделей:

  • информация в учебниках
  • произведения художественной литературы
  • тексты, описывающие алгоритмы
  • текстовое описание объектов и процессов

Математические

Табличные

Графические


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математическая модель - описание математическими формулами соотношений между количественными характеристиками объекта моделирования.

Примеры математических моделей:

  • модель прямолинейного перемещения тела
  • математическая модель периода колебаний пружинного маятника

Математические

модели

Табличные

Графические


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Табличная информационная модель – это модель, в которой объекты или их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной таблицы.

Типы табличных моделей:

  • таблицы типа «объект-свойство»
  • таблицы типа «объект-объект»

Математические

Табличные

модели

Графические


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Графическая информационная модель – это наглядный способ представления объектов и процессов в виде графических изображений.

Примеры графических информационных моделей:

Математические

Табличные

Графические

модели

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математические

Табличные

карта

Графические

модели

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математические

Табличные

чертеж

Графические

модели

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математические

Табличные

схема

Графические

модели

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Ненаправленный

г р а ф

д. Е л о в о

ст. Озерная

д. Подгорная

Математические

Отношения: « соединение дорогой »

(симметричные связи)

  • Элементы системы, изображенные овалами, называются вершинами
  • Связи между элементами называются отношениями
  • ребро – симметричная связь
  • дуга – несимметричная связь

Ориентированный г р а ф

Начальная вершина

Лев Нилыч

Отношение:

«быть дедушкой»

Табличные

Конечная вершина

Графические

модели

граф

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математические

Табличные

Графические

модели

диаграмма


ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

  • ТИПЫ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ

Вербальные

Математические

Табличные

График изменения температуры

Графические

модели

график

диаграмма


  • Пример таблицы «объект-свойство»

База данных «Домашняя библиотека»

НАЗВАНИЕ

Беляев А. Р.

Человек-амфибия

Кервуд Д.

Тургенев И. С.

Бродяги севера

Повести и рассказы

Олеша Ю. К.

Избранное

Беляев А. Р.

Звезда КЭЦ

Тынянов Ю. Н.

Толстой Л. Н.

Беляев А. Р.

Повести и рассказы

Избранное


  • Пример таблицы «объект-объект»

База данных «Успеваемость»

Аликин Петр

Ботов Иван

Волков Илья

Галкина Нина


Методика информационного моделирования

Определение

моделирования

Определение

информационной

Построение

информационной

Системный

анализ объекта

моделирования


Домашнее задание

Учить: конспект в тетради,

§ 13,

Составить свое генеалогическое древо (Графическая модель)

  • Какие свойства реальных объектов воспроизводят:
  • Муляжи продуктов в магазине; Манекен
  • Муляжи продуктов в магазине;
  • Манекен
  • Приведите пример материальной и информационной моделей самолета
  • Составьте различные модели:
  • Квадрата Прямой линии Человека
  • Квадрата
  • Прямой линии
  • Человека

4. Постройте графическую модель (график ) Петиной успеваемости за год (по четвертям) для следующих предметов: физика, химия, алгебра, геометрия.

Петины оценки:

физика – 5 4 4 5

химия – 3 4 3 4

алгебра – 4 4 3 4

1 слайд

DIM A(5) FOR I= 1 TO 5 INPUT A(I) NEXT I S=0 FOR I=1 TO 5 S=S+A(I) NEXT I PRINT S Разработка: Клинковская М.В., учитель информатики и ИКТ МОУ гимназии №7 г. Балтийска, 2008-09 уч.год.

2 слайд

ПРЕДСТАВЛЯЮТ ОБЪЕКТЫ И ПРОЦЕССЫ В ОБРАЗНОЙ ИЛИ ЗНАКОВОЙ ФОРМЕ, ТАКЖЕ В ФОРМЕ ТАБЛИЦ, БЛОК-СХЕМ, И Т.Д.

3 слайд

DIM A(5) FOR I= 1 TO 5 INPUT A(I) NEXT I S=0 FOR I=1 TO 5 S=S+A(I) NEXT I PRINT S В БИОЛОГИИ: ВЕСЬ ЖИВОТНЫЙ МИР РАССМАТРИВАЕТСЯ КАК ИЕРАРХИЧЕСКАЯ СИСТЕМА (ТИП, КЛАСС, ОТРЯД, СЕМЕЙСТВО, РОД, ВИД)

4 слайд

Словесные модели – устные и письменные описания с использованием иллюстраций Математические модели – математические формулы, отображающие связь различных параметров объекта или процесса Геометрические модели – графические формы и объемные конструкции Структурные модели – схемы, графики, таблицы, и т.д. Логические модели – такие, в которых представлены различные варианты выбора действий на основе умозаключений и анализа условий Специальные модели – ноты, химические формулы, и т.д.

5 слайд

Н.Коперник и изображение гелиоцентрической системы Коперника не Солнце движется вокруг Земли, а Земля вращается вокруг своей оси и Солнца; Орбиты всех небесных тел проходят вокруг Солнца. не Солнце движется вокруг Земли, а Земля вращается вокруг своей оси и Солнца; Орбиты всех небесных тел проходят вокруг Солнца.

6 слайд

Формализация – процесс построения информационных моделей с помощью формальных языков Формальные языки: системы специализированных языковых средств или их символов с точными правилами сочетаемости МАТЕМАТИЧЕСКИЙ ЯЗЫК АЛГЕБРАИЧЕСКИХ ФОРМУЛ F = ma ЯЗЫК ХИМИЧЕСКИХ ФОРМУЛ H 2 O НОТНАЯ ГРАМОТА

7 слайд

8 слайд

Работа 1. Объект моделирования: одноклассник. Цель моделирования: построение словесной модели человека. Параметры моделирования. Фамилия, имя, отчество объекта. Черты лица, телосложение (рост и вес) Любимый учебный предмет объекта, причины. Хобби объекта. Инструмент моделирования: текстовый процессор Microsoft Word. Тема: «Построение словесной модели в среде текстового редактора»

9 слайд

Ход работы. 1. Откройте текстовый редактор Microsoft Word. 2. Выберите объект моделирования (любого одноклассника). 3. Составьте его мысленный образ в соответствии с параметрами моделирования. 4. Оформите мысленный образ средствами текстового редактора. 5. Покажите результат учителю.

10 слайд

Работа 2. Тема: «Построение математической модели средствами редактора формул» Объект моделирования: математическая формула прямолинейного равноускоренного движения тела (изменение координаты x) Цель моделирования: построение математической модели Инструмент моделирования: редактор формул Microsoft Equation.

11 слайд

Ход работы. 1. Откройте текстовый процессор Microsoft Word. 2. Выбрать в меню Вставка команду Объект 3. Выбрать Microsoft Eqation 3.0. 4. Составить формулу с помощью наборов символов и шаблонов. 5. Ниже формулы в документе поясните обозначения, используемые в записи (описание величин). 5. Результат работы покажите учителю. 1. Откройте текстовый процессор Microsoft Word. 2. Выбрать в меню Вставка команду Объект 3. Выбрать Microsoft Eqation 3.0. 4. Составить формулу с помощью наборов символов и шаблонов. 5. Ниже формулы в документе поясните обозначения, используемые в записи (описание величин). 5. Результат работы покажите учителю.

12 слайд

Определите последовательность набора формулы; Все символы набираются последовательно, с помощью клавиатуры; Числа, знаки и переменные можно вводить с клавиатуры; Перемещаться между элементами формулы можно с помощью клавиш управления курсором или щелчком мыши установить курсор в нужное место; Если формул несколько, отделяйте одну от другой нажатием клавиши Enter; Если Вы хотите набрать текст, находясь в редакторе формул, следует выбрать Стиль, Текст. Для редактирования формулы дважды щелкните по ней. Инструкция СОВЕТЫ ПО НАБОРУ ФОРМУЛ

14 слайд

Знать классификацию моделей по форме представления. Приведите примеры словесных и математических моделей. С помощью каких программных инструментов можно создавать такие модели? Составьте словесную модель объяснения с родителями в ситуации, когда вы получили «двойку». Попробуйте убедить родителей в том, что ваша «двойка» является едва ли не благом. По приведенной словесной модели составьте математическую модель: квадрат гипотенузы равен сумме квадратов катетов. Выполните это задание с помощью компьютера.

15 слайд

Литература: Н. Угринович «Информатика. Базовый курс – 9» С.Бешенков, Е.Ракитина «Информатика. Систематический курс – 10» Н.В. Макарова «Информатика 7 –9», О.Л.Соколова. «Универсальные поурочные разработки по информатике. 10 класс». Москва. «ВАКО», 2006.

Слайд 3

Слайд 5

Спец. программы

«Начала ЭЛЕКТРОНИКИ» –это программа, представляющая собой электронный конструктор, позволяющий детально показать на экране монитора процесс сборки различных электрических схем. «Electronics Workbench» –один из самых известных пакетов схематического моделирования цифровых, аналоговых и аналогово-цифровых электронных схем высокой сложности.

Слайд 6

В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сейчас невозможно решение крупных научных и экономических задач.

Слайд 7

Вычислительный эксперимент - это эксперимент над моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью. Вычислительный эксперимент применяется в: Физике, химии, астрономии, биологии, экологии Психологии, лингвистике, филологии Экономике, социологии, промышленности

Слайд 8

Преимущества проведения вычислительного эксперимента

Не требуется сложного лабораторного оборудования Существенно сокращаются временные затраты на эксперимент Возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им нереальных, неправдоподобных значений Возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен

Слайд 9

В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Моделирование – процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Замещаемый объект называется оригиналом, замещающий - моделью.

Слайд 10

Цели и задачи курса «Компьютерное моделирование»

В результате освоения учебной дисциплины студент должен уметь: работать с пакетами прикладных программ профессиональной направленности; пользоваться справочной, нормативно-технической документацией совместно с возможностями программ для компьютерного моделирования при исследовании характеристик радиоэлектронных устройств и их составных частей; графически представлять и анализировать диаграммы характеристик радиоэлектронных устройств и их составных частей; применять средства вычислительной техники для расчета элементов конструкций и диаграмм характеристик радиоэлектронных устройств и их составных частей; анализировать электрические схемы электронных приборов и устройств. выбирать измерительные приборы и оборудование для проведения испытаний электронных приборов и устройств, настраивать и регулировать электронные приборы и устройства, проводить испытания электронных приборов и устройств используя виртуальные лаборатории.

Слайд 11

В результате освоения учебной дисциплины студент должен знать:

математические методы расчёта различных радиоэлектронных устройств и режимов их работы; возможности и особенности программ «Начала электроники» и «ElectronicsWorkbench»; физические процессы при работе радиоэлектронных устройств; особенности конструкций и принцип работы различных радиоэлектронных устройств, разновидности радиоэлектронных устройств; методику расчета элементов конструкций и диаграмм характеристик составных частей радиоэлектронных устройств.

Слайд 12

Моделирование как метод познания

Моделирование – это метод познания, состоящий в создании и исследовании моделей 17.11.2017

Слайд 13

Модель – это некий новый объект, который отражает некоторые существенные свойства изучаемого явления или процесса

Слайд 14

Модель (фр.сл. мodele, ит. сл. modelo, лат. сл. modelus) – мера, образец

Слайд 15

Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью

Слайд 16

Человек: Кукла Манекен Скелет Скульптура Реальный объект - оригинал Модели

Слайд 17

Свойства объекта, которые должна отражать модель, определяются поставленной целью его изучения.

Слайд 18

Классификация моделей по способу представления:

  • Слайд 19

    Материальные модели –

    Воспроизводят геометрические, физические и другие свойства объектов в материальной форме Пример: Глобус (модель земного шара) - география

    Слайд 20

    Информационные модели –

    Представляют объекты и процессы в форме схем, чертежей, таблиц, формул, текстов и т.д. Пример: Рисунок цветка – ботаника, формула - математика

    Слайд 21

    Слайд 22

    Классификация моделей по области использования:

    Учебные модели; Опытные модели; Научно-технические модели; Игровые модели; Имитационные модели.

    Слайд 23

    Классификация моделей с учетом фактора времени:

    Статические; Динамические. Если модель учитывает изменение свойств моделируемого объекта от времени, то модель называется динамической, в противном случае статической. Примеры: динамические: заводные игрушки; статические: глобус; мягкие игрушки; учебники.

    Слайд 24

    Классификация моделей по области использования: Биологические; Исторические; Физические; И др.

    Слайд 25

    Моделирование

    Слайд 26

    Моделирование как метод познания То, на что обращено внимание человека (предмет, явление, процесс, отношение), с целью изучения, называется объектом. Для изучения объекта, решения задачи необходимо построение модели заданного объекта. Модельсоздается человеком в процессе познания окружающего мира и отражает существенные особенности изучаемого объекта, явления или процесса. Моделирование – это метод познания, состоящий в создании и исследовании моделей. Любая модель не является абсолютной копией своего оригинала, она лишь отражает некоторые его качества и свойства. Свойства модели зависят от цели моделирования. Модели одного и того же объекта будут разными, если они создаются для разных целей. Примеры: таблица Менделеева, модель строения атома, модель кристаллической решетки, модель скелета, муляжи, модели технических устройств и т.д. Далее Назад

    Слайд 27

    Классификация моделей Материальные модели– это материальные копии объектов моделирования. Примеры: глобус, кукла, робот, макеты зданий, муляжи. Далее Назад Рассмотрим наиболее распространенные признаки, по которым классифицируются модели: цель использования (учебные модели, опытные, имитационные, игровые, научно-технические); область знаний (биологические, экономические, социологические, и т.д.) Способ (форма) представления Фактор времени По учебнику информатики Н.Угриновича для 9 класса

    Слайд 28

    Информационные модели Далее Назад Рассмотрим информационные модели с позиции способов представления информации: мысленные мысленное представление об объекте (алфавит кодирования – система понятий, носитель – нервная система человека, мозг); вербальные представление модели средствами естественного разговорного языка (форма представления – устное или письменное сообщение Примеры: инструкции, литературные произведения); образные выражение свойств оригинала с помощью образов (рисунки, кинофильмы, геометрические модели) Образно-знаковые Знаковые Образно-знаковые Структурные модели Чертежи Планы Карты Графики Табличные Сетевые В виде графов Другие Математические Логические Программные тексты Другие

    Слайд 29

    Виды и типы моделей Далее Назад Виды и типы моделей Натурные Информационные Технические: Автомобиля, самолета и пр. Глобус, манекен, муляж, макет здания и др. Вербальные Графические Табличные Математические Описание объекта моделирования на естественном языке Таблицы типа объект-свойство, объект – объект. Двоичные матрицы Карты, схемы, чертежи, графики Количественные характеристики и связь между ними Общие свойства моделей Объекты моделирования: - материальные объекты; - явления природы; - процессы Ограниченность модели: - отражает лишь часть свойств объекта моделирования Неоднозначность модели: - Разные модели одного объекта, созданные для разных целей Назначение модели: - ограниченная замена реального объекта; - использование модели для прогнозирования поведения реального объекта По учебнику информатики И.Семакина для 9 класса

    Слайд 30

    Формализация Далее Назад Что такое формализация? В этом слове заключается суть информационного моделирования. Информационная модель описывает объект моделирования в форме каких-либо знаков: букв, цифр, картографических элементов, математических или химических формул и т.д. Самой формализованной наукой является математика. Формализация– процесс построения информационных моделей с помощью формальных языков. Формализация– есть результат перехода от реальных свойств объекта моделирования к их формальному обозначению в определенной знаковой системе.

    Слайд 31

    Компьютерные модели Далее Назад По учебнику информатики И.Семакина для 9 класса Компьютерные модели (информационные модели, реализованные на компьютере) Численные методы: Арифметические способы решения любой мат. задачи Компьютерная математическая модель Вычислительный эксперимент: Расчет состояния объекта моделирования по математической модели Наглядное представление результатов: Использование компьютерной графики и мультимедиа для представления результатов расчетов Управление в реальном времени: Быстрые компьютерные модели, работающие со скоростью физического управляемого процесса Компьютерная имитационная модель Имитация состояния реальной системы со стохастическим (случайным) поведением ее элементов Системы массового обслуживания Транспортные системы

    Слайд 32

    Классификация информационных моделей

  • Слайд 33

    Классификация информационных моделей:

  • Слайд 34

    В табличной модели перечень однотипных объектов или свойств размещены в первом столбце (или строке) таблицы, а значения их свойств размещаются в следующих строках (или столбцах) таблицы

    Слайд 35

    Таблица типа «Объект-свойство»

    В одной строке содержится информация об одном объекте или событии

    Слайд 36

    Таблица типа «Объект-объект»

    Отражают связи между объектами

    Слайд 37

    Таблица типа «Двойная матрица»

    Отражает качественный характер связи между объектами

    Слайд 38

    Табличные информационные модели

    Статическая Цена отдельных устройств компьютера (1997г)

    Слайд 39

    Динамическая Изменение цены компьютера

    Слайд 40

    Граф – это средство наглядного представления состава и структуры схемы

  • Слайд 41

    Иерархическая модель – система, элементы которой находятся друг с другом в отношении вложенности или подчиненности.Иерархическая модель – граф, в котором вершины связаны между собой по принципу «один ко многим»

    Слайд 42

    Иерархические информационные модели

    Статическая Классификация компьютеров Карманные Настольные Компьютеры Супер-компьютеры Рабочие станции Персональные компьютеры Портативные

    Слайд 43

    Динамическая Генеалогическое дерево Рюриковичей (X-XI века) Изяслав Всеволод Святослав Ярослав Мудрый Борис Глеб Святослав Ярополк Владимир

    Слайд 44

    Сетевая модель – граф, в котором вершины связаны между собой по принципу «многие ко многим»

    Слайд 45

    Сетевыеинформационные модели

  • Слайд 46

    Семантическая модель – граф, в основе которого лежит то, что любые знания можно представить в виде совокупности объектов (понятий) и связей (отношений) между ними.

    Слайд 47

    «Однажды в студеную зимнюю пору я из лесу вышел.»

    Однажды из лесу вышел Я зимнюю в студеную в пору Что сделал? Кто? Откуда? Когда? В какую?

    Слайд 48

    Графические модели

    Слайд 49

    Цель моделирования: создание меню простых элементов для конструирования из них различных объектов Инструмент моделирования: Paint Ход работы: 1. Создать меню простых элементов, максимально учитывая форму и размер. 2. Создать из простых элементов объект. 3. Результат сохранить в своей папке. Построение графических моделей Элементы меню Объект: Мозаика Элементы меню Объект: геометри- ческий орнамент Элементы меню Элементы меню Элементы меню: Объект: топографиче- ская карта Объект: электрическая схема Элементы меню: Объект: интерьер Элементы меню: Объект: растительный орнамент Элементы меню: Объект: конструкция из блоков Объект конструкция из кирпичиков Далее Назад

    Слайд 50

    Геометрические модели Далее Назад Выполнить ленточный геометрический орнамент. Используемые элементы: Линии: сплошные и прерывистые: прямые, ломаные, волнистые Геометрические фигуры: квадрат ромб треугольник круг полукруг овал полуовал и другие простейшие фигуры Компьютерный вариант: графический редактор PAINT. Примеры ожидаемого результата:

    Слайд 51

    Моделирование в электронных таблицах

    Слайд 52

    Многие объекты и процессы можно описать математическими формулами, связывающими их параметры. Эти формулы и есть математическая модель оригинала. По ним можно сделать численные расчеты с различными значениями параметров и получить количественные характеристики модели. Расчеты, в свою очередь, позволяют сделать выводы и обобщить их. Табличный процессор предоставляет инструмент по расчету количественных характеристик исследуемого объекта или процесса, берет на себя всю трудоемкую работу по вычислениям. В этой теме выделены четыре основных этапа моделирования: постановка задачи, разработка модели, компьютерный эксперимент, анализ результатов моделирования.

    Слайд 53

    МОДЕЛИРОВАНИЕ СИТУАЦИЙ ЗАДАЧА Расчет количества рулонов обоев для оклейки помещения I этап. Постановка задачи Описание задачи В магазине продаются обои. Наименования, длина и ширина рулона известны. Провести исследование, которое позволит автоматически определить необходимое количество рулонов для оклейки любой комнаты. Размеры комнаты задаются высотой (h),длиной (а) и шириной (b).При этом учесть, что 15% площади стен комнаты занимают окна и двери, а при раскрое 10% площади рулона уходит на обрезки. Цель моделирования Установить связь между геометрическими размерами конкретной комнаты и выбранного образца обоев. Анализ объекта Объект моделирования - система, состоящая из двух более простых объектов: комнаты и обоев. Каждый из входящих в систему объектов имеет свои параметры. Связь между объектами системы определяется при установлении количества рулонов для оклейки комнаты.

    Слайд 54

    II этап. Разработка модели Информационная модель

    Слайд 55

    Математическая модель При расчете фактической площади рулона, которая пойдет на оклейку помещения, надо отбросить 10% реальной площади на обрезки. Формула расчета имеет вид: Sp=0,9*l*d, где l - длина рулона, d - ширина рулона, * - знак умножения. При расчете фактической площади стен учитывается неоклееваемая площадь окон и дверей (15%) Sком=0,85*2*(а+b)*h Количество рулонов, необходимых для оклейки комнаты, вычис­ляется по формуле,где добавлен один запасной рулон.

    Слайд 56

    Компьютерная модель Для моделирования выберем среду электронной таблицы. В этой среде информационная и математическая модели объединяются в таблицу, которая содержит три области: исходные данные - управляемые параметры (неуправляемые параметры учтены в формулах расчета); промежуточные расчеты; результаты.

    Слайд 57

    Задание Заполните по образцу расчетную таблицу. Введите формулы в расчетные ячейки.

    Слайд 58

    III этап. Компьютерный эксперимент План моделирования Провести тестовый расчет компьютерной модели по данным, приведенным в таблице. Провести расчет количества рулонов для помещений вашей квартиры. Изменить данные некоторых образцов обоев и проследить за перерасчетом результатов. Добавить строки с образцами и дополнить модель расчетом по новым образцам. Результаты эксперимента оформить в виде отчета в текстовом редакторе. Технология моделирования 1. Ввести в таблицу тестовые данные и сравнить результаты тестового расчета с результатами, приведенными в таблице. 2. Поочередно ввести размеры комнат вашей квартиры и результаты расчетов скопировать в текстовый редактор. 3. Составить отчет. IV этап. Анализ результатов моделирования По данным таблицы можно определить количество рулонов каждого образца обоев для любой комнаты.

    Слайд 59

    Моделирование теста Голланда в электронной таблице

    Посмотреть все слайды



  • Понравилась статья? Поделитесь ей