Контакты

Системы открытого испарения. Аппараты с открытой поверхностью испарения. Системы охлаждения с элементами Пелетье

Реферат на тему:

Система охлаждения компьютера

План:


    Введение

  • 1 Пассивное охлаждение

  • 2 Воздушное охлаждение

  • 3 Системы жидкостного охлаждения

  • 4 Фреонные установки

  • 5 Системы открытого испарения

  • 6 Системы каскадного охлаждения Литература

Введение

Система охлаждения компьютера - набор средств для отвода тепла в компьютере. Система охлаждение бывает активная и пассивная

Пассивная:


  1. Радиатор (алюминиевый или медный)

  2. Тепловая трубка

  3. Испарительная камера
Активная

  1. воздушное охлаждение

  2. Система жидкостного охлаждения

  3. Фреонная установка

  4. системы открытого испарения

1. Пассивное охлаждение

Представлено такими компонентами, как радиатор (алюминиевый, медный или композитный), тепловые трубки, испарительные камеры. Радиаторы имеют большое число ребер для увеличения эффективной площади рассеивания тепла. Отдельно установленные радиаторы (без тепловых трубок и кулеров) в нынешнее время практически не встречаются из-за их малой эффективности. Могут отводить тепло с элементов, тепловыделение которых не более 10-15 ватт. Например с микросхем северного и южного моста материнской платы.

2. Воздушное охлаждение

В своей основе имеют радиатор, на котором крепится вентилятор (кулер). Система воздушного охлаждения позволяет эффективно отводить тепло от современных центральных и графических процессоров без каких-либо сложных ухищрений.

3. Системы жидкостного охлаждения

(жаргон. водянка )

Установка, в которой в качестве рабочего тела используется жидкость (чаще всего - дистиллированная вода,часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, жидкий металл, другие специальные жидкости). Состоит из:


  • Помпы - насоса для циркуляции воды

  • Теплообменника (ватерблока, водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента

  • Специального радиатора для рассеивания тепла охлаждающей жидкости

  • Резервуара с жидкостью

  • Шлангов или труб
Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

4. Фреонные установки

Установка, в которой в качестве хладагента используется фреон. Принцип работы аналогичен с холодильником.

5. Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

6. Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако, они являются и наиболее сложными в изготовлении и наладке.

Литература


  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М.: «Вильямс», 2007. - С. 1299-1328 . - ISBN 0-7897-3404-4

Система охлаждения компьютера - набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

  1. В атмосферу (радиаторные системы охлаждения):
    1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)
    2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))
  2. Вместе с теплоносителем (проточные системы водяного охлаждения)
  3. За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов, системы охлаждения делятся на:

  1. Системы воздушного (аэрогенного) охлаждения
  2. Системы жидкостного охлаждения
  3. Фреоновая установка
  4. Системы открытого испарения

Также существуют комбинированные системы охлаждения сочетающие элементы систем различных типов:

  1. Ватерчиллер
  2. Системы с использованием элементов Пельтье

Системы воздушного охлаждения

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки - около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью . Для увеличения теплопроводности промежуток заполняют теплопроводными пастами .

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты , транзисторы цепей питания, модули оперативной памяти), как правило устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности жёсткие диски , установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера .

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода , часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз , жидкий металл , или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

  • Помпы - насоса для циркуляции рабочей жидкости
  • Теплосъёмника (ватерблока , водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
  • Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
  • Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости
  • Шлангов или труб
  • (Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

  • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения работающих при температурах ниже температуры окружающей среды)
  • Трудности охлаждения нескольких компонентов
  • Повышенное электропотребление
  • Сложность и дороговизна

Ватерчиллеры

Системы совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий , испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга »). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако, они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой системы охлаждения (обычно воздушной или жидкостной). Так как компонент может охлаждаться до температур ниже температуры окружающего воздуха, необходимо применять меры по борьбе с конденсатом. По сравнению с фреоновыми установками элементы Пельтье компактнее и не создают шум и вибрацию, но заметно менее эффективны.

См. также

Примечания

Литература

  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М .: «Вильямс», 2007. - С. 1299-1328 . - ISBN 0-7897-3404-4

Ссылки

  • Охлаждение водой для всех компонентов компьютера своими руками

Wikimedia Foundation . 2010 .

Проблема охлаждения компьютера

Работа современных высокопроизводительных электронных компонентов, составляющих основу компьютеров, сопровождается значительным тепловыделением, особенно при эксплуатации их в форсированных режимах разгона (overclocking). Эффективная работа таких компонентов требует адекватных средств охлаждения, обеспечивающих необходимые температурные режимы их работы. Как правило, такими средствами поддержки оптимальных температурных режимов являются кулеры, основой которых являются традиционные радиаторы и вентиляторы.

Надежность и производительность таких средств непрерывно повышаются за счет совершенствования их конструкции, использования новейших технологий и применения в их составе разнообразных датчиков и средств контроля. Это позволяет интегрировать подобные средства в состав компьютерных систем, обеспечивая диагностику и управление их работой с целью достижения наибольшей эффективности при обеспечении оптимальных температурных режимов эксплуатации компьютерных элементов, что повышает надежность и удлиняет сроки их безаварийной работы.

(греется за счет работы микроэлементов таких как транзисторы)

Основные источники тепла

В персональном компьютере являются: видеокарта, процессор, элементы системной платы (питание процессора, чипсет и др.), а так же блок питания. Остальные элементы ПК греются не так сильно, как выше перечисленные.

Средний процессор выделяет от 60 до 130 ватт тепла. Стандартная, игровая видеокарта во время работы греется до 70-100 градусов по Цельсию и это - абсолютно нормально; блок питания легко греется до 60 градусов; чипсет в мат. плате тоже греется до 55-65 градусов и т.д.

Нужно помнить, что мощность пропорциональна нагреву системы, чем мощнее сис-ма, тем больше выделяется тепла.

Тепло может утилизироваться:

1.В атмосферу (радиаторные системы охлаждения):

1.Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)

2.Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))

2.Вместе с теплоносителем (системы жидкостного охлаждения)

3.За счет фазового перехода теплоносителя (системы открытого испарения)

Типы систем охлаждения компьютера

1.Системы воздушного (аэрогенного) охлаждения

2.Системы жидкостного охлаждения

3.Фреоновая установка

4.Системы открытого испарения

Системы воздушного (аэрогенного) охлаждения

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок. Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки — около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами.

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью — радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило, устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности, жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.

Системы жидкостного охлаждения

Принцип работы — передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда — масло, антифриз, жидкий металл, или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

Помпы — насоса для циркуляции рабочей жидкости

Теплосъёмника (ватерблока, водоблока, головки охлаждения) — устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости

Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным

Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости

Шлангов или труб

(Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель который установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды)

Трудности охлаждения нескольких компонентов

Повышенное электропотребление

Сложность и дороговизна

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Полупроводниковые холодильники Пельтье

Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.

Пассивные системы

Безвентиляторных систем охлаждения не бывает - тепло должно куда-то деваться из закрытого корпуса. Пассивная система охлаждения хороша тем, что большую часть времени не требует принудительного обдува: вентилятор, закрепленный на ней, включается только в критическом режиме.

Теплова́я тру́бка, теплотру́бка

элемент системы охлаждения, принцип работы которого основан на том, что в закрытых трубках из теплопроводящего металла (например, меди) находится легкокипящая жидкость. Перенос тепла происходит за счёт того, что жидкость испаряется на горячем конце трубки, поглощая теплоту испарения, и конденсируется на холодном, откуда перемещается обратно на горячий конец.

Тепловые трубки бывают двух видов: гладкостенные и с пористым покрытием изнутри. В гладкостенных трубках сконденсировавшаяся жидкость возвращается в зону испарения под действием исключительно силы тяжести — иными словами, такая трубка будет работать только в положении, когда зона конденсации находится выше зоны испарения, а жидкость имеет возможность стекать в зону испарения. Тепловые трубки с наполнителем (фитилями, керамикой и т. п.) могут работать практически в любом положении, поскольку жидкость возвращается в зону испарения по его порам под действием капиллярных сил, а сила тяжести в этом процессе играет незначительную роль.

Материалы и хладагенты для тепловых трубок выбираются в зависимости от условий применения: от жидкого гелия для сверхнизких температур до ртути и даже индия для высокотемпературных применений. Однако большинство современных трубок в качестве рабочей жидкости используют аммиак, воду, метанол и этанол.

Активные системы Лопастные кулеры

Разъём Molex имеет три провода: чёрный (земля), красный (плюс) и жёлтый (сигнальный). PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12 Вольт) и красный (+5 Вольт). Разъёмы Molex устанавливаются на материнских платах, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В), и изменять её в случае необходимости. По жёлтому сигнальному проводу материнская плата получает от вентилятора информацию о частоте вращения его лопастей. Сегодня это стало очень актуальным, поскольку остановившийся на кулере процессора вентилятор может привести к повреждению процессора. Поэтому современные материнские платы следят, чтобы вентилятор всегда вращался, и если он останавливается, то выключают компьютер. Подключение через Molex имеет один недостаток: к материнским платам опасно цеплять вентиляторы с потребляемой мощностью более 6 Вт. Разъём же PC-Plug выдержит десятки Ватт, но при подключении к нему Вы не сможете узнать, работает ли Ваш вентилятор или нет. Сегодня всё чаще вентиляторы имеют в комплекте переходники PC-Plug - Molex, чтобы подключать их к блоку питания, или даже сразу оба разъёма: PC-Plug и Molex, чтобы получать питание от БП компьютера, а по сигнальному проводу Molex-а сообщать материнской плате о скорости работы моторчика.

Программы мониторинга температур

SpeedFan - программа, предназначенная для слежения за разными датчиками компьютера, отображающими: температуру жесткого диска, чипсета, процессора, вентиляторов, а также их скорость, напряжение и т.д.

CPU-Z Бесплатная утилита, которая собирает и показывает сведения об основных аппаратных компонентах компьютера.

OpenHardwareMonitor

AIDA64

Бренды кулеров

Thermalright

SilverStone

Zalman

Thermaltake

Deepcool

Открытая система отопления является самой простой и энергонезависимой системой с естественной циркуляцией. Основана такая система на законах термодинамики. На выходе из котла создаётся повышенное давление, далее горячая вода проходит по трубам в область с более низким давлением, при прохождении теряя температуру.

Далее охлаждённый теплоноситель возвращается обратно в отопительный котёл, где снова нагревается. Происходит естественная циркуляция теплоносителя. Система функционирует исключительно на воде, так как использование антифризов для отопления приводит к их быстрому испарению.

В открытой системе теплоснабжения обязательно наличие расширительного бака, так как нагретая вода расширяется. Расширительный бак служит для приёма излишков воды при расширении и возврата её в систему при остывании, а также для удаления воды при чрезмерном её объёме. Бак герметичен не полностью, поэтому вода испаряется, вследствие чего необходимо постоянно возобновлять её уровень. В открытой системе отопления не используется насос. Система достаточно проста. Состоит из труб, стального расширительного бачка, радиаторов и котла. Применяются дизельные, газовые котлы и котлы на твёрдом топливе , кроме электрических.

В открытой системе отопления вода циркулирует медленно. Поэтому трубы при эксплуатации должны разогреваться постепенно, чтобы избежать их повреждения и закипания теплоносителя. Это может привести к преждевременному износу оборудования. Если в зимний период отопление не используется, то вода из системы обязательно сливается, во избежание замерзания трубопровода.

Чтобы циркуляция теплоносителя осуществлялась на необходимом уровне, необходимо производить монтаж отопительного котла в более низком месте системы, а в самом высоком устанавливать расширительный бак, например, на чердаке. Зимой расширительный бак необходимо утеплить. При установке трубопровода в открытой системе отопления требуется использовать минимальное количество поворотов, фасонных и соединительных деталей.

В закрытой системе отопления все элементы системы герметичны, отсутствует испарение воды. Циркуляция осуществляется при помощи насоса. Так называемая система с принудительной циркуляцией теплоносителя включает в себя трубы, котёл, радиаторы, расширительный бак, циркуляционный насос .

В закрытой системе отопления при повышении температуры клапан расширительного бака открывается и забирает излишки теплоносителя. При понижении температуры теплоносителя циркуляционный насос закачивает его обратно в систему. В данной системе отопления поддерживается давление в заранее установленных пределах. Благодаря этому, осуществляется функция деаэрации теплоносителя.

Для стабильной работы системы закрытого отопления также используется расширительный бак из высокопрочного металла. Это закрытый бак, состоящий из двух половин, завальцованных друг к другу.

Внутри располагается мембрана (диафрагма) из высокопрочной жаростойкой резины. Также внутри имеется небольшой объём газа (может быть азот, который закачивается на заводе-производителе, или воздух, накапливающийся в системе по необходимости). Мембрана разделяет бак на части: одна часть - куда поступают излишки воды при нагреве системы отопления, в другой части находится азот или воздух, не вступающие в прямое соприкосновение с водой. Таким образом, теплоноситель при нагреве поступает в расширительный бак и проникает в мембрану. При остывании теплоносителя газ, находящийся за мембраной, начинает выталкивать его обратно в систему.

Отличия открытой и закрытой системы отопления

Имеются следующие отличительные особенности систем открытого и закрытого отопления:

  1. По месту размещения расширительного бака. В открытой системе отопления бак располагают в наивысшем месте системы, а в закрытой системе расширительный бак можно устанавливать в любом месте, даже рядом с котлом.
  2. Закрытая система отопления изолирована от атмосферных потоков, что препятствует попаданию воздуха. Это увеличивает срок службы. За счёт создания дополнительного давления в верхних узлах системы снижается возможность образования воздушных пробок в радиаторах, расположенных сверху.
  3. В открытой системе отопления используются трубы с большим диаметром, что создаёт неудобства, также монтаж труб осуществляется под наклоном для обеспечения циркуляции. Не всегда имеется возможность скрыть толстостенные трубы. Для обеспечения всех правил гидравлики необходимо учитывать уклоны распределения потоков, высоту подъёма, повороты, заужения, подключение к радиаторам.
  4. В закрытой системе отопления используются трубы меньшего диаметра, что удешевляет конструкцию.
  5. Также в закрытой системе отопления важно правильно установить насос, что позволит избежать шума.

Преимущества открытой системы отопления

  • простое обслуживание системы;
  • отсутствие насоса обеспечивает бесшумную работу;
  • равномерный прогрев отапливаемого помещения;
  • быстрый пуск и остановка системы;
  • независимость от электроснабжения, если в доме не будет электричества, то система будет работоспособна;
  • высокая надёжность;
  • не требуется особых навыков для установки системы, в первую очередь устанавливается котёл, мощность котла будет зависеть от отапливаемой площади.

Недостатки открытой системы отопления

  • возможность уменьшения срока эксплуатации системы при попадании воздуха, так как уменьшается теплопередача, в результате чего появляется коррозия, нарушается циркуляция воды, образуются воздушные пробки;
  • воздух, содержащийся в открытой системе отопления, может вызывать кавитацию, при которой разрушаются элементы системы, находящиеся в кавитационной зоне, такие, как арматура, поверхности труб;
  • возможность замерзания теплоносителя в расширительном баке;
  • медленный нагрев системы после включения;
  • необходим постоянный контроль уровня теплоносителя в расширительном баке для исключения испарения;
  • невозможность использования антифриза в качестве теплоносителя;
  • достаточна громоздка;
  • низкий коэффициент полезного действия.

Преимущества закрытой системы отопления

  • простой монтаж ;
  • нет необходимости постоянно контролировать уровень теплоносителя;
  • возможность применения антифриза , не боясь размораживания системы отопления;
  • путём увеличения или уменьшения количества теплоносителя, подаваемого в систему, можно регулировать температуру в помещении;
  • из-за отсутствия испарения воды снижается необходимость её подпитывать из внешних источников;
  • самостоятельное регулирование давления;
  • система экономичная и технологичная, имеет более длительный срок эксплуатации;
  • возможность подключения к закрытой системе отопления дополнительных источников отопления.

Недостатки закрытой системы отопления

  • самый главный недостаток - зависимость системы от наличия постоянного электроснабжения ;
  • при работе насоса требуется электричество;
  • для аварийного электроснабжения рекомендуется приобрести небольшой генератор ;
  • при нарушении герметичности стыков возможно попадание воздуха в систему;
  • размеры расширительных мембранных баков в закрытых помещениях большой площади;
  • бак заполняется жидкостью на 60−30%, наименьший процент заполнения приходится на большие баки, на больших объектах применяются баки с расчётным объёмом в несколько тысяч литров.
  • возникает проблема с размещением таких баков, используются специальные установки, чтобы поддерживать определённое давление.

Каждый, кто собирается установить систему отопления, сам выбирает, какая система проще и надёжней для него.

Открытую систему отопления, благодаря простоте эксплуатации, большой надёжности, используют для оптимального отапливания небольших помещений. Это могут быть небольшие одноэтажные дачные дома, а также загородные дома.

Закрытая система отопления является более современной и более сложной. Её применяют в многоэтажных домах и коттеджах.

Компьютерная система состоит из таких электронных компонентов, как центральный процессор, оперативная память, материнская плата и многое другое. Этими электронными компонентами вырабатывается много тепла, особенно центральным процессором, что всегда является поводом для беспокойства, т.к. избыток тепла может негативно сказаться на работе центрального процессора, привести к серьезным неисправностям и даже повреждению. Рассеивая избыточное тепло путем охлаждения и вентиляции, вы поддерживаете работу компонентов в безопасных рабочих температурах (безопасный тепловой диапазон у каждого производителя свой). Перегрев сокращает срок службы компьютерных компонентов и периферийных устройств и может привести к потере данных, нанеся непоправимый ущерб.
Для охлаждения компьютерных компонентов используются различные системы охлаждения.

Системы открытого испарения

Системы открытого испарения применяются редко, хотя при этом достигаются более низкие температуры. В качестве хладагента используются жидкий азот, гелий, сухой лед, установленные в специальном стакане на охлаждаемом компоненте. Системы открытого испарения очень эффективны, но приходится часто закупать хладагент, что является дополнительной статьей расхода. Более распространены системы воздушного и жидкостного охлаждения.

Системы воздушного охлаждения

В системах с воздушным охлаждением тепло от компьютерного компонента передается на радиатор, который излучает его и отдает воздуху посредством теплопроводности. Устанавливаются радиаторы на нагревающийся компонент, место соединения заполняется теплопроводной пастой, чтобы исключить воздушную прослойку, имеющую низкую теплопроводность.
Радиаторные системы охлаждения бывают активные и пассивные. Активные используют вентилятор для обдува и охлаждения системы (устанавливаются на компонентах с большим тепловыделением), а пассивные радиаторы отводят тепло путем естественной конвекции (устанавливаются на компонентах, выделяющих не много тепла). Чтобы получить наилучший эффект от активного охлаждения, нужно выбрать качественный вентилятор с подшипниками, а для эффективной работы системы пассивного охлаждения радиаторы должны быть размещены в местах, где имеется постоянный поток воздуха. Эффект охлаждения зависит от площади рассеивания тепла радиатора и скорости проходящего воздуха. Воздушное охлаждение с вентиляторами является широко практикуемым способом отвода тепла в компьютерах. Наиболее распространенные размеры вентиляторов 60мм, 80мм, 92мм и 120мм.
Увеличить срок службы компонентов и повысить их надежность (во избежание перегрева) можно, поддерживая чистой, без пыли среду для вашего компьютера. Пыль препятствует теплоотдаче, действует как изоляция, приводит к перегреву. Раз в шесть месяцев следует чистить радиатор процессора, фильтр вентилятора, расположенного на верхней части блока питания, и кулер на видеокарте.

Системы водяного охлаждения

В системах жидкостного охлаждения тепло от компьютерного компонента передается радиатору (активному или пассивному) через рабочую жидкость (чаще всего дистиллированную воду), т.е. теплоносителем является вода. Т.к. вода по сравнению с воздухом имеет большую теплопроводность и теплоемкость, эти системы более эффективны, что заключается в лучшем охлаждении компонентов и низком уровне шума. Тепло, выделяемое процессором или другим компонентом, через теплообменник (ватерблок) передается воде. Вода в системе по силиконовым (или из ПВХ) трубкам циркулирует с помощью помпы. Далее она проходит на другой теплообменник (радиатор), где происходит ее охлаждение путем передачи тепла воздуху (пассивно или активно). Системы жидкостного охлаждения актуальны для мощных компьютеров, бывают внешними и внутренними. Обязательный набор их компонентов (ватерблок, радиатор, насос, трубки, фитинги, вода) можно расширить для удобства, например, датчиками, измерителями, фильтром, сливным краном и т.д. Системы жидкостного охлаждения имеют и свои минусы, а это высокая стоимость и сложность сборки.

Понравилась статья? Поделитесь ей