Контакты

Определение ограничений целостности. Создание первичных ключей Первичный ключ в таблице sql

Типы данных сами по себе ограничивают множество данных, которые можно сохранить в таблице. Однако для многих приложений такие ограничения слишком грубые. Например, столбец, содержащий цену продукта, должен, вероятно, принимать только положительные значения. Но такого стандартного типа данных нет. Возможно, вы также захотите ограничить данные столбца по отношению к другим столбцам или строкам. Например, в таблице с информацией о товаре должна быть только одна строка с определённым кодом товара.

Для решения подобных задач SQL позволяет вам определять ограничения для столбцов и таблиц. Ограничения дают вам возможность управлять данными в таблицах так, как вы захотите. Если пользователь попытается сохранить в столбце значение, нарушающее ограничения, возникнет ошибка. Ограничения будут действовать, даже если это значение по умолчанию.

5.3.1. Ограничения-проверки

Ограничение-проверка - наиболее общий тип ограничений. В его определении вы можете указать, что значение данного столбца должно удовлетворять логическому выражению (проверке истинности). Например, цену товара можно ограничить положительными значениями так:

Name text, price numeric CHECK (price > 0) );

Как вы видите, ограничение определяется после типа данных, как и значение по умолчанию. Значения по умолчанию и ограничения могут указываться в любом порядке. Ограничение-проверка состоит из ключевого слова CHECK , за которым идёт выражение в скобках. Это выражение должно включать столбец, для которого задаётся ограничение, иначе оно не имеет большого смысла.

Вы можете также присвоить ограничению отдельное имя. Это улучшит сообщения об ошибках и позволит вам ссылаться на это ограничение, когда вам понадобится изменить его. Сделать это можно так:

CONSTRAINT positive_price CHECK (price > 0));

То есть, чтобы создать именованное ограничение, напишите ключевое слово CONSTRAINT , а за ним идентификатор и собственно определение ограничения. (Если вы не определите имя ограничения таким образом, система выберет для него имя за вас.)

Ограничение-проверка может также ссылаться на несколько столбцов. Например, если вы храните обычную цену и цену со скидкой, так вы можете гарантировать, что цена со скидкой будет всегда меньше обычной:

CREATE TABLE products (product_no integer, name text, price numeric CHECK (price > 0), discounted_price numeric CHECK (discounted_price > 0), CHECK (price > discounted_price) );

Первые два ограничения определяются похожим образом, но для третьего используется новый синтаксис. Оно не связано с определённым столбцом, а представлено отдельным элементом в списке. Определения столбцов и такие определения ограничений можно переставлять в произвольном порядке.

Про первые два ограничения можно сказать, что это ограничения столбцов, тогда как третье является ограничением таблицы, так как оно написано отдельно от определений столбцов. Ограничения столбцов также можно записать в виде ограничений таблицы, тогда как обратное не всегда возможно, так как подразумевается, что ограничение столбца ссылается только на связанный столбец. (Хотя Postgres Pro этого не требует, но для совместимости с другими СУБД лучше следовать это правилу.) Ранее приведённый пример можно переписать и так:

CREATE TABLE products (product_no integer, name text, price numeric, CHECK (price > 0), discounted_price numeric, CHECK (discounted_price > 0), CHECK (price > discounted_price));

Или даже так:

CREATE TABLE products (product_no integer, name text, price numeric CHECK (price > 0), discounted_price numeric, CHECK (discounted_price > 0 AND price > discounted_price));

Это дело вкуса.

Ограничениям таблицы можно присваивать имена так же, как и ограничениям столбцов:

CREATE TABLE products (product_no integer, name text, price numeric, CHECK (price > 0), discounted_price numeric, CHECK (discounted_price > 0), CONSTRAINT valid_discount CHECK (price > discounted_price));

Следует заметить, что ограничение-проверка удовлетворяется, если выражение принимает значение true или NULL. Так как результатом многих выражений с операндами NULL будет значение NULL, такие ограничения не будут препятствовать записи NULL в связанные столбцы. Чтобы гарантировать, что столбец не содержит значения NULL, можно использовать ограничение NOT NULL, описанное в следующем разделе.

5.3.2. Ограничения NOT NULL

Ограничение NOT NULL просто указывает, что столбцу нельзя присваивать значение NULL. Пример синтаксиса:

CREATE TABLE products (product_no integer NOT NULL , name text NOT NULL , price numeric);

Ограничение NOT NULL всегда записывается как ограничение столбца и функционально эквивалентно ограничению CHECK ( имя_столбца IS NOT NULL) , но в Postgres Pro явное ограничение NOT NULL работает более эффективно. Хотя у такой записи есть недостаток - назначить имя таким ограничениям нельзя.

Естественно, для столбца можно определить больше одного ограничения. Для этого их нужно просто указать одно за другим:

CREATE TABLE products (product_no integer NOT NULL, name text NOT NULL, price numeric NOT NULL CHECK (price > 0));

Порядок здесь не имеет значения, он не обязательно соответствует порядку проверки ограничений.

Для ограничения NOT NULL есть и обратное: ограничение NULL . Оно не означает, что столбец должен иметь только значение NULL, что конечно было бы бессмысленно. Суть же его в простом указании, что столбец может иметь значение NULL (это поведение по умолчанию). Ограничение NULL отсутствует в стандарте SQL и использовать его в переносимых приложениях не следует. (Оно было добавлено в Postgres Pro только для совместимости с некоторыми другими СУБД.) Однако некоторые пользователи любят его использовать, так как оно позволяет легко переключать ограничения в скрипте. Например, вы можете начать с:

CREATE TABLE products (product_no integer NULL, name text NULL, price numeric NULL);

и затем вставить ключевое слово NOT , где потребуется.

Подсказка

При проектировании баз данных чаще всего большинство столбцов должны быть помечены как NOT NULL.

5.3.3. Ограничения уникальности

Ограничения уникальности гарантируют, что данные в определённом столбце или группе столбцов уникальны среди всех строк таблицы. Ограничение записывается так:

CREATE TABLE products (product_no integer UNIQUE

в виде ограничения столбца и так:

CREATE TABLE products (product_no integer, name text, price numeric, UNIQUE (product_no) );

в виде ограничения таблицы.

Чтобы определить ограничение уникальности для группы столбцов, запишите его в виде ограничения таблицы, перечислив имена столбцов через запятую:

UNIQUE (a, c) );

Такое ограничение указывает, что сочетание значений перечисленных столбцов должно быть уникально во всей таблице, тогда как значения каждого столбца по отдельности не должны быть (и обычно не будут) уникальными.

Вы можете назначить уникальному ограничению имя обычным образом:

CREATE TABLE products (product_no integer CONSTRAINT must_be_different UNIQUE, name text, price numeric);

При добавлении ограничения уникальности будет автоматически создан уникальный индекс-B-дерево для столбца или группы столбцов, перечисленных в ограничении. Условие уникальности, распространяющееся только на некоторые строки, нельзя записать в виде ограничения уникальности, однако такое условие можно установить, создав уникальный частичный индекс .

Вообще говоря, ограничение уникальности нарушается, если в таблице оказывается несколько строк, у которых совпадают значения всех столбцов, включённых в ограничение. Однако два значения NULL при сравнении никогда не считаются равными. Это означает, что даже при наличии ограничения уникальности в таблице можно сохранить строки с дублирующимися значениями, если они содержат NULL в одном или нескольких столбцах ограничения. Это поведение соответствует стандарту SQL, но мы слышали о СУБД, которые ведут себя по-другому. Имейте в виду эту особенность, разрабатывая переносимые приложения.

5.3.4. Первичные ключи

Ограничение первичного ключа означает, что образующий его столбец или группа столбцов может быть уникальным идентификатором строк в таблице. Для этого требуется, чтобы значения были одновременно уникальными и отличными от NULL. Таким образом, таблицы со следующими двумя определениями будут принимать одинаковые данные:

CREATE TABLE products (product_no integer UNIQUE NOT NULL, name text, price numeric); CREATE TABLE products (product_no integer PRIMARY KEY , name text, price numeric);

Первичные ключи могут включать несколько столбцов; синтаксис похож на запись ограничений уникальности:

CREATE TABLE example (a integer, b integer, c integer, PRIMARY KEY (a, c) );

При добавлении первичного ключа автоматически создаётся уникальный индекс-B-дерево для столбца или группы столбцов, перечисленных в первичном ключе, и данные столбцы помечаются как NOT NULL .

Таблица может иметь максимум один первичный ключ. (Ограничений уникальности и ограничений NOT NULL, которые функционально почти равнозначны первичным ключам, может быть сколько угодно, но назначить ограничением первичного ключа можно только одно.) Теория реляционных баз данных говорит, что первичный ключ должен быть в каждой таблице. В Postgres Pro такого жёсткого требования нет, но обычно лучше ему следовать.

Первичные ключи полезны и для документирования, и для клиентских приложений. Например, графическому приложению с возможностями редактирования содержимого таблицы, вероятно, потребуется знать первичный ключ таблицы, чтобы однозначно идентифицировать её строки. Первичные ключи находят и другое применение в СУБД; в частности, первичный ключ в таблице определяет целевые столбцы по умолчанию для сторонних ключей, ссылающихся на эту таблицу.

5.3.5. Внешние ключи

Ограничение внешнего ключа указывает, что значения столбца (или группы столбцов) должны соответствовать значениям в некоторой строке другой таблицы. Это называется ссылочной целостностью двух связанных таблиц.

Пусть у вас уже есть таблица продуктов, которую мы неоднократно использовали ранее:

CREATE TABLE products (product_no integer PRIMARY KEY, name text, price numeric);

Давайте предположим, что у вас есть таблица с заказами этих продуктов. Мы хотим, чтобы в таблице заказов содержались только заказы действительно существующих продуктов. Поэтому мы определим в ней ограничение внешнего ключа, ссылающееся на таблицу продуктов:

REFERENCES products (product_no) , quantity integer);

С таким ограничением создать заказ со значением product_no , отсутствующим в таблице products (и не равным NULL), будет невозможно.

В такой схеме таблицу orders называют подчинённой таблицей, а products - главной . Соответственно, столбцы называют так же подчинённым и главным (или ссылающимся и целевым).

Предыдущую команду можно сократить так:

CREATE TABLE orders (order_id integer PRIMARY KEY, product_no integer REFERENCES products , quantity integer);

то есть, если опустить список столбцов, внешний ключ будет неявно связан с первичным ключом главной таблицы.

Внешний ключ также может ссылаться на группу столбцов. В этом случае его нужно записать в виде обычного ограничения таблицы. Например:

CREATE TABLE t1 (a integer PRIMARY KEY, b integer, c integer, FOREIGN KEY (b, c) REFERENCES other_table (c1, c2) );

Естественно, число и типы столбцов в ограничении должны соответствовать числу и типам целевых столбцов.

Ограничению внешнего ключа можно назначить имя стандартным способом.

Таблица может содержать несколько ограничений внешнего ключа. Это полезно для связи таблиц в отношении многие-ко-многим. Скажем, у вас есть таблицы продуктов и заказов, но вы хотите, чтобы один заказ мог содержать несколько продуктов (что невозможно в предыдущей схеме). Для этого вы можете использовать такую схему:

CREATE TABLE products (product_no integer PRIMARY KEY, name text, price numeric); CREATE TABLE orders (order_id integer PRIMARY KEY, shipping_address text, ...); CREATE TABLE order_items (product_no integer REFERENCES products, order_id integer REFERENCES orders, quantity integer, PRIMARY KEY (product_no, order_id));

Заметьте, что в последней таблице первичный ключ покрывает внешние ключи.

Мы знаем, что внешние ключи запрещают создание заказов, не относящихся ни к одному продукту. Но что делать, если после создания заказов с определённым продуктом мы захотим удалить его? SQL справится с этой ситуацией. Интуиция подсказывает следующие варианты поведения:

    Запретить удаление продукта

    Удалить также связанные заказы

    Что-то ещё?

Для иллюстрации давайте реализуем следующее поведение в вышеприведённом примере: при попытке удаления продукта, на который ссылаются заказы (через таблицу order_items), мы запрещаем эту операцию. Если же кто-то попытается удалить заказ, то удалится и его содержимое:

CREATE TABLE products (product_no integer PRIMARY KEY, name text, price numeric); CREATE TABLE orders (order_id integer PRIMARY KEY, shipping_address text, ...); CREATE TABLE order_items (product_no integer REFERENCES products ON DELETE RESTRICT , order_id integer REFERENCES orders ON DELETE CASCADE , quantity integer, PRIMARY KEY (product_no, order_id));

Ограничивающие и каскадные удаления - два наиболее распространённых варианта. RESTRICT предотвращает удаление связанной строки. NO ACTION означает, что если зависимые строки продолжают существовать при проверке ограничения, возникает ошибка (это поведение по умолчанию). (Главным отличием этих двух вариантов является то, что NO ACTION позволяет отложить проверку в процессе транзакции, а RESTRICT - нет.) CASCADE указывает, что при удалении связанных строк зависимые от них будут так же автоматически удалены. Есть ещё два варианта: SET NULL и SET DEFAULT . При удалении связанных строк они назначают зависимым столбцам в подчинённой таблице значения NULL или значения по умолчанию, соответственно. Заметьте, что это не будет основанием для нарушения ограничений. Например, если в качестве действия задано SET DEFAULT , но значение по умолчанию не удовлетворяет ограничению внешнего ключа, операция закончится ошибкой.

Аналогично указанию ON DELETE существует ON UPDATE , которое срабатывает при изменении заданного столбца. При этом возможные действия те же, а CASCADE в данном случае означает, что изменённые значения связанных столбцов будут скопированы в зависимые строки.

Обычно зависимая строка не должна удовлетворять ограничению внешнего ключа, если один из связанных столбцов содержит NULL. Если в объявление внешнего ключа добавлено MATCH FULL , строка будет удовлетворять ограничению, только если все связанные столбцы равны NULL (то есть при разных значениях (NULL и не NULL) гарантируется невыполнение ограничения MATCH FULL). Если вы хотите, чтобы зависимые строки не могли избежать и этого ограничения, объявите связанные столбцы как NOT NULL .

Внешний ключ должен ссылаться на столбцы, образующие первичный ключ или ограничение уникальности. Таким образом, для связанных столбцов всегда будет существовать индекс (определённый соответствующим первичным ключом или ограничением), а значит проверки соответствия связанной строки будут выполняться эффективно. Так как команды DELETE для строк главной таблицы или UPDATE для зависимых столбцов потребуют просканировать подчинённую таблицу и найти строки, ссылающиеся на старые значения, полезно будет иметь индекс и для подчинённых столбцов. Но это нужно не всегда, и создать соответствующий индекс можно по-разному, поэтому объявление внешнего ключа не создаёт автоматически индекс по связанным столбцам.

Последнее обновление: 27.04.2019

Внешние ключи позволяют установить связи между таблицами. Внешний ключ устанавливается для столбцов из зависимой, подчиненной таблицы, и указывает на один из столбцов из главной таблицы. Как правило, внешний ключ указывает на первичный ключ из связанной главной таблицы.

Общий синтаксис установки внешнего ключа на уровне таблицы:

FOREIGN KEY (столбец1, столбец2, ... столбецN) REFERENCES главная_таблица (столбец_главной_таблицы1, столбец_главной_таблицы2, ... столбец_главной_таблицыN)

Для создания ограничения внешнего ключа после FOREIGN KEY указывается столбец таблицы, который будет представляет внешний ключ. А после ключевого слова REFERENCES указывается имя связанной таблицы, а затем в скобках имя связанного столбца, на который будет указывать внешний ключ. После выражения REFERENCES идут выражения ON DELETE и ON UPDATE , которые задают действие при удалении и обновлении строки из главной таблицы соответственно.

Например, определим две таблицы и свяжем их посредством внешнего ключа:

CREATE TABLE Customers (Id INT PRIMARY KEY AUTO_INCREMENT, Age INT, FirstName VARCHAR(20) NOT NULL, LastName VARCHAR(20) NOT NULL, Phone VARCHAR(20) NOT NULL UNIQUE); CREATE TABLE Orders (Id INT PRIMARY KEY AUTO_INCREMENT, CustomerId INT, CreatedAt Date, FOREIGN KEY (CustomerId) REFERENCES Customers (Id));

В данном случае определены таблицы Customers и Orders. Customers является главной и представляет клиента. Orders является зависимой и представляет заказ, сделанный клиентом. Таблица Orders через столбец CustomerId связана с таблицей Customers и ее столбцом Id. То есть столбец CustomerId является внешним ключом, который указывает на столбец Id из таблицы Customers.

С помощью оператора CONSTRAINT можно задать имя для ограничения внешнего ключа:

CREATE TABLE Orders (Id INT PRIMARY KEY AUTO_INCREMENT, CustomerId INT, CreatedAt Date, CONSTRAINT orders_custonmers_fk FOREIGN KEY (CustomerId) REFERENCES Customers (Id));

ON DELETE и ON UPDATE

С помощью выражений ON DELETE и ON UPDATE можно установить действия, которые выполняются соответственно при удалении и изменении связанной строки из главной таблицы. В качестве действия могут использоваться следующие опции:

    CASCADE : автоматически удаляет или изменяет строки из зависимой таблицы при удалении или изменении связанных строк в главной таблице.

    SET NULL : при удалении или обновлении связанной строки из главной таблицы устанавливает для столбца внешнего ключа значение NULL . (В этом случае столбец внешнего ключа должен поддерживать установку NULL)

    RESTRICT : отклоняет удаление или изменение строк в главной таблице при наличии связанных строк в зависимой таблице.

    NO ACTION : то же самое, что и RESTRICT .

    SET DEFAULT : при удалении связанной строки из главной таблицы устанавливает для столбца внешнего ключа значение по умолчанию, которое задается с помощью атрибуты DEFAULT. Несмотря на то, что данная опция в принципе доступна, однако движок InnoDB не поддерживает данное выражение.

Каскадное удаление

Каскадное удаление позволяет при удалении строки из главной таблицы автоматически удалить все связанные строки из зависимой таблицы. Для этого применяется опция CASCADE :

CREATE TABLE Orders (Id INT PRIMARY KEY AUTO_INCREMENT, CustomerId INT, CreatedAt Date, FOREIGN KEY (CustomerId) REFERENCES Customers (Id) ON DELETE CASCADE);

Подобным образом работает и выражение ON UPDATE CASCADE . При изменении значения первичного ключа автоматически изменится значение связанного с ним внешнего ключа. Однако поскольку первичные ключи изменяются очень редко, да и с принципе не рекомендуется использовать в качестве первичных ключей столбцы с изменяемыми значениями, то на практике выражение ON UPDATE используется редко.

Установка NULL

При установки для внешнего ключа опции SET NULL необходимо, чтобы столбец внешнего ключа допускал значение NULL:

CREATE TABLE Orders (Id INT PRIMARY KEY AUTO_INCREMENT, CustomerId INT, CreatedAt Date, FOREIGN KEY (CustomerId) REFERENCES Customers (Id) ON DELETE SET NULL);

) мы разбирали, как устроена реляционная (табличная) база данных и выяснили, что основными элементами реляционной базы данных являются: таблицы, столбцы и строки, а в математических понятиях: отношения, атрибуты и кортежи. Также часто, строки называют записями, столбцы называют колонками, а пересечение записи и колонки называют ячейкой.

Важно вспомнить, что содержание строки и названия столбцов должны быть уникальны в пределах одной базы данных.

Типы данных в базах

Важно понимать, что можно создавать базы для любых типов данных: текстов, дат, времени, событий, цифр. В зависимости от типа информации реляционные базы данных делят на типы. Каждый тип данных (атрибут) имеет свое обозначение:

  • INTEGER- данные из целых чисел;
  • FLOAT — данные из дробных чисел, так называемые данные с плавающей точкой;
  • CHAR, VARCHAR — текстовые типы данных (символьные);
  • LOGICAL — логический тип данных (да/нет);
  • DATE/TIME — временные данные.

Это основные типы данных, которых на самом деле гораздо больше. Причем, каждый язык программирования имеет свой набор системных атрибутов (типов данных).

Что такое первичный ключ и внешний ключ таблиц реляционных баз данных

Первичный ключ

Выше мы вспоминали: каждая строка (запись) БД должна быть уникальна. Именно первичный ключ в виде наборов определенных значений, максимально идентифицируют каждую запись. Можно определить по-другому. Первичный ключ: набор определенных признаков, уникальных для каждой записи. Обозначается первичный ключ, как primary key.

Primary key (PK) очень важен для каждой таблицы. Поясню почему.

  • Primary key не позволяет создавать одинаковых записей (строк) в таблице;
  • PK обеспечивают логическую связь между таблицами одной базы данных (для реляционных БД).

На логической связи между таблицами, стоит остановиться подробнее.

Ключ внешний

Foreign key, кратко FK. Обеспечивает однозначную логическую связь, между таблицами одной БД.

Например, есть две таблицы А и В. В таблице А (обувь), есть первичный ключ: размер, в таблице В (цвет) должна быть колонка с названием размер. В этой таблице «размер» это и будет внешний ключ для логической связи таблиц В и А.

Более сложный пример.

Две таблицы данных: Люди и Номера телефонов.

Таблица: Люди

Таблица: Номера телефонов

В таблице Номера телефонов PK уникален. FK этой таблицы является PK таблицы Люди. Связь между номерами телефонов и людьми обеспечивает FK таблицы телефонов. То есть:

  • У Зайцева два телефона;
  • У Волкова два телефона;
  • У Белкина один телефон.
первичный ключ и внешний ключ

В завершении добавлю, что любая , управляющая базой данных, имеет технические возможности составить первичный ключ.

PRIMARY KEY — первичный ключ, ограничение, позволяющее однозначно идентифицировать каждую запись в таблице SQL .

PRIMARY KEY Oracle
Первичный Ключ (PRIMARY KEY ) может ограничивать таблицы или их столбцы. Это ограничение работает так же как и ограничение UNIQUE. Но следует учитывать различие между первичными ключами и уникальностью столбцов в способе их использования с внешними ключами. Первичные ключи не могут позволять значений NULL. Это означает что, подобно полям в ограничении UNIQUE, любое поле, используемое в ограничении PRIMARY KEY , должно уже быть обьявлено NOT NULL.

PRIMARY KEY Oracle . Пример №1.
Пример создания таблицы SQL с ограничением PRIMARY KEY :

Student
(Kod_stud integer NOT NULL PRIMARY KEY ,
Fam char(30) NOT NULL UNIQUE,
Adres char(50),
Ball decimal);

Лучше всего помещать ограничение PRIMARY KEY в поле (или в поля), которое будет образовывать уникальный идентификатор строки, и сохранить ограничение UNIQUE для полей которые должны быть уникальными логически (такие как номера телефона или поле sname), а не для идентификации строк. Ограничение PRIMARY KEY может также быть применено для многочисленных полей, составляющих уникальную комбинацию значений:

PRIMARY KEY Oracle . Пример №2.

CREATE TABLE Student
(Fam char (30) NOT NULL,
Im char (30) NOT NULL
Adres char (50),
PRIMARY KEY (Fam, Im));

PRIMARY KEY MySQL

PRIMARY KEY SQL / MySQL . Пример №3.

CREATE TABLE Persons (
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P_Id));

PRIMARY KEY SQL / MySQL . Пример №4.

CREATE TABLE `ad_packages` (
`id` int(111) NOT NULL auto_increment,
`title` varchar(132) NOT NULL default »,
`price` float NOT NULL default ‘0’,
`type` varchar(22) NOT NULL default »,
`c_type` enum(‘cash’,’points’,’rur’) NOT NULL default ‘cash’,
PRIMARY KEY (`id`)
);

PRIMARY KEY SQL / MySQL . Пример №5.

CREATE TABLE `gamestat` (
`id` int(11) NOT NULL auto_increment,
`game` varchar(10) NOT NULL default ‘tuz’,
`stavok` int(11) NOT NULL default ‘0’,
`usd` float NOT NULL default ‘0’,
`rur` float NOT NULL default ‘0’,
`point` float NOT NULL default ‘0’,
`bank_usd` decimal(12,2) NOT NULL default ‘0.00’,
`bank_rur` decimal(12,2) NOT NULL default ‘0.00’,
`bank_point` decimal(12,2) NOT NULL default ‘0.00’,
PRIMARY KEY (`id`)
);

P rimary Key (Первичный ключ) является полем в таблице, которое однозначно идентифицирует каждую строку/запись в таблице базы данных. Первичные ключи должны содержать уникальные значения. Первичный ключ столбец не может иметь значения .

Таблица может иметь только один первичный ключ, который может состоять из одного или нескольких полей. Когда несколько полей используются в качестве первичного ключа, их называют составным ключом.

Если таблица имеет первичный ключ, определенный на любом поле (ях), то вы не можете иметь две записи, имеющие одинаковое значение этого поля (ей).

Примечание – Вы могли бы использовать эти понятия при создании таблиц базы данных.

Создание первичного ключа

Вот синтаксис для определения атрибута ID в качестве первичного ключа в таблице Customers.

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID));

Для того, чтобы создать ограничение первичного ключа на столбце «ID», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL:

ALTER TABLE CUSTOMERS ADD PRIMARY KEY (ID);

Примечание

Если вы используете оператор ALTER TABLE, чтобы добавить первичный ключ, столбец первичного ключа (ей) должен был уже объявлен как не содержащий NULL значения (если таблица была создана первым).

Для определения первичного ключа на нескольких столбцах, используйте синтаксис SQL приведенный ниже:

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID, NAME));

Чтобы создать ограничение первичного ключа на колонки «ID» и «NAME», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL.

ALTER TABLE CUSTOMERS ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

Удаление первичного ключа

Вы можете очистить ограничения первичного ключа из таблицы с помощью синтаксиса, приведенного ниже.

ALTER TABLE CUSTOMERS DROP PRIMARY KEY;



Понравилась статья? Поделитесь ей