Контакты

Таблицы истинности логических операций как решать. Тождественные преобразования логических выражений

Сегодня мы поговорим о предмете под названием информатика. Таблица истинности, разновидности функций, порядок их выполнения - это наши основные вопросы, на которые мы постараемся найти ответы в статье.

Обычно данный курс преподается еще в средней школе, но большое количество учеников является причиной недопонимания некоторых особенностей. А если вы собрались посвятить этому свою жизнь, то просто не обойтись без сдачи единого государственного экзамена по информатике. Таблица истинности, преобразование сложных выражений, решение логических задач - это все может встретиться в билете. Сейчас мы рассмотрим более подробно данную тему и поможем вам набрать больше балов на ЕГЭ.

Предмет логики

Что же это за предмет - информатика? Таблица истинности - как ее строить? Зачем нужна наука логика? На все эти вопросы мы сейчас с вами ответим.

Информатика - это довольно увлекательный предмет. Он не может вызывать затруднения у современного общества, ведь все, что нас окружает, так или иначе, относится к компьютеру.

Основы науки логики даются преподавателями средней школы на уроках информатики. Таблицы истинности, функции, упрощение выражений - все это должны объяснять учителя информатики. Эта наука просто необходима в нашей жизни. Приглядитесь, все подчиняется каким-либо законам. Вы подбросили мяч, он подлетел вверх, но после этого упал опять на землю, это произошло из-за наличия законов физики и силы земного притяжения. Мама варит суп и добавляет соль. Почему когда мы его едим, нам не попадаются крупинки? Все просто, соль растворилась в воде, подчиняясь законам химии.

Теперь обратите внимание на то, как вы разговариваете.

  • «Если я отвезу своего кота в ветеринарную клинику, то ему сделают прививку».
  • «Сегодня был очень тяжелый день, потому что приходила проверка».
  • «Я не хочу идти в университет, потому что сегодня будет коллоквиум» и так далее.

Все, что вы говорите, обязательно подчиняется законам логики. Это относится как к деловой, так и к дружеской беседе. Именно по этой причине необходимо понимать законы логики, чтобы не действовать наугад, а быть уверенным в исходе событий.

Функции

Для того чтобы составить таблицу истинности к предложенной вам задаче, необходимо знать логические функции. Что это такое? Логическая функция имеет некоторые переменные, которые являются утверждениями (истинными или ложными), и само значение функции должно дать нам ответ на вопрос: «Выражение истинно или ложно?».

Все выражения принимают следующие значения:

  • Истина или ложь.
  • И или Л.
  • 1 или 0.
  • Плюс или минус.

Здесь отдавайте предпочтение тому способу, который для вас является более удобным. Для того чтобы составить таблицу истинности, нам нужно перечислить все комбинации переменных. Их количество вычисляется по формуле: 2 в степени n. Результат вычисления - это количество возможных комбинаций, переменной n в данной формуле обозначается количество переменных в условии. Если выражение имеет много переменных, то можно воспользоваться калькулятором или сделать для себя небольшую таблицу с возведением двойки в степень.

Всего в логике выделяют семь функций или связей, соединяющих выражения:

  • Умножение (конъюнкция).
  • Сложение (дизъюнкция).
  • Следствие (импликация).
  • Эквиваленция.
  • Инверсия.
  • Штрих Шеффера.
  • Стрелка Пирса.

Первая операция, представленная в списке, имеет название «логическое умножение». Ее графически можно отметить в виде перевернутой галочки, знаками & или *. Вторая в нашем списке операция - логическое сложение, графически обозначается в виде галочки, +. Импликацию называют логическим следствием, обозначается в виде стрелки, указывающей от условия на следствие. Эквиваленция обозначается двухсторонней стрелкой, функция имеет истинное значение только в тех случаях, кода оба значения принимают либо значение «1», либо «0». Инверсию называют логическим отрицанием. Штрих Шеффера называют функцией, которая отрицает конъюнкцию, а стрелку Пирса - функцией, отрицающей дизъюнкцию.

Основные двоичные функции

Логическая таблица истинности помогает найти ответ в задаче, но для этого необходимо запомнить таблицы двоичных функций. В этом разделе они будут предоставлены.

Конъюнкция (умножение). Если два то в результате мы получаем истину, во всех остальных случаях мы получаем ложь.

Результат - ложь при логическом сложении мы имеем только в случае двух ложных входных данных.

Логическое следствие имеет ложный результат только тогда, когда условие является истиной, а следствие - ложью. Здесь можно привести пример из жизни: «Я хотел купить сахар, но магазин был закрыт», следовательно, сахар так и не куплен.

Эквиваленция является истиной только в случаях одинаковых значений входных данных. То есть при парах: «0;0» или «1;1».

В случае инверсии все элементарно, если на входе есть истинное выражение, то оно преобразуется в ложное, и наоборот. На картинке видно, как она обозначается графически.

Штрих Шиффера будет на выходе иметь ложный результат только при наличии двух истинных выражений.

В случае стрелки Пирса, функция будет истинной только в том случае, если на входе мы имеем только ложные выражения.

В каком порядке выполнять логические операции

Обратите внимание на то, что построение таблиц истинности и упрощение выражений возможно только при правильной очередности выполнения операций. Запомните, в какой последовательности их необходимо проводить, это очень важно для получения верного результата.

  • логическое отрицание;
  • умножение;
  • сложение;
  • следствие;
  • эквиваленция;
  • отрицание умножения (штрих Шеффера);
  • отрицание сложения (стрелка Пирса).

Пример №1

Сейчас мы предлагаем рассмотреть пример построения таблицы истинности для 4 переменных. Необходимо узнать в каких случаях F=0 у уравнения: неА+В+С*D

Ответом на это задание будет являться перечисление следующих комбинаций: «1;0;0;0», «1;0;0;1» и «1;0;1;0». Как видите, составлять таблицу истинности довольно просто. Еще раз хочется обратить ваше внимание на порядок выполнения действий. В конкретном случае он был следующий:

  1. Инверсия первого простого выражения.
  2. Конъюнкция третьего и четвертого выражения.
  3. Дизъюнкция второго выражения с результатами предыдущих вычислений.

Пример №2

Сейчас мы рассмотрим еще одно задание, которое требует построения таблицы истинности. Информатика (примеры были взяты из школьного курса) может иметь и в качестве задания. Коротко рассмотрим одну из них. Виновен ли Ваня в краже мяча, если известно следующее:

  • Если Ваня не крал или Петя крал, то Сережа принял участие в краже.
  • Если Ваня не виновен, то и Сережа мяч не крал.

Введем обозначения: И - Ваня украл мяч; П - Петя украл; С - Сережа украл.

По данному условию мы можем составить уравнение: F=((неИ+П) импликация С)*(неИ импликация неС). Нам нужны те варианты, где функция принимает истинное значение. Далее необходимо составить таблицу, так как данная функция имеет целых 7 действий, то мы их опустим. Будем вносить только входные данные и результат.

Обратите внимание на то, что в данной задаче мы вместо знаков «0» и «1» использовали плюс и минус. Это также приемлемо. Нас интересуют комбинации, где F=+. Проанализировав их, мы можем сделать следующий вывод: Ваня участвовал в краже мяча, так как во всех случаях, где F принимает значение +, И имеет положительное значение.

Пример №3

Сейчас предлагаем вам найти количество комбинаций, когда F=1. Уравнение имеет следующий вид: F=неА+В*А+неВ. Составляем таблицу истинности:

Ответ: 4 комбинации.

Основные логические операции

Отрицание (инверсия), от латинского inversio -переворачиваю:

Соответствует частице НЕ, словосочетанию НЕВЕРНО, ЧТО;

Обозначение: не A, A, -A;

таблица истинности:

Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

Пример: A = {На улице идет снег}.

A={Не верно, что на улице идет снег}

A={На улице не идет снег};

Логическое сложение (дизъюнкция), от латинского disjunctio - различаю:

Соответствует союзу ИЛИ;

Обозначение: +, или, or, V;

Таблица истинности:

Дизъюнкция ложна тогда и только тогда, когда оба высказывания ложны.

Пример: F={На улице светит солнце или дует сильный ветер};

Логическое умножение (конъюкция), от латинского conjunctio -связываю:

Соответствует союзу И

(в естественном языке: и А, и В, как А, так и В,А вместе с В,А, не смотря на В, А, в то время как В);

Обозначение: Ч, , &, и, ^, and;

Таблица истинности:

Конъюкция истинна тогда и только тогда, когда оба высказывания истинны.

Пример: F={На улице светит солнце и дует сильный ветер};

Любое сложное высказывание можно записать с помощью основных логических операций И, ИЛИ, НЕ.С помощью логических схем И, ИЛИ, НЕ можно реализовать логическую функцию, описывающую работу различных устройств компьютера.

2) Таблица истинности - это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (либо, либо).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Конъю́нкция- логическая операция, по своему применению максимально приближённая к союзу "и".логи́ческое умноже́ние, иногда просто "И".

Дизъю́нкция-логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу». логи́ческое сложе́ние, иногда просто «ИЛИ».

Импликация - бинарная логическая связка, по своему применению приближенная к союзам «если…то…».Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону (остриё всегда указывает на следствие).

Эквивале́нция (или эквивале́нтность) - двуместная логическая операция. Обычно обозначается символом ≡ или ↔.

7 . Логические выражения, таблицы истинности логических выражений.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

Логические операции и таблицы истинности

Логическое умножение КОНЪЮНКЦИЯ - это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.

Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ

Логическое отрицание: ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … , ТО …

Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности"

Порядок выполнения логических операций в сложном логическом выражении:

1. инверсия

2. конъюнкция

3. дизъюнкция

4. импликация

5. эквивалентность

Для изменения указанного порядка выполнения операций используются скобки.

Построение таблиц истинности для сложных выражений:

Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)

Количество столбцов = количество переменных + количество логических операций

При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

ПРИМЕР: составить таблицу истинности сложного логического выражения D = неA & (B+C)

А,В, С - три простых высказывания, поэтому:

количество строк = 23 +2 = 10 (n=3, т.к. на входе три элеманта А, В, С)

количество столбцов: 1) А

4) не A это инверсия А (обозначим Е)

5) B + C это операция дизъюнкции (обозначим F)

6) D = неA & (B+C), т.е. D = E & F это операция конъюнкции

А В С E = не А (не 1) F = В+С (2+3) D = E&F (4*5)

Алгебра логики

Алгебра логики

Алгебра логики (англ. algebra of logic ) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Основоположником алгебры логики является английский математик и логик Дж. Буль (1815-1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

Кроме двузначной алгебры высказываний , в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

В алгебре логики различаются простые (элементарные) высказывания , обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то» . Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В ; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В .

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE) . Это соответствует цифровому представлению — 1 и 0 . Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А ), которое называется отрицанием исходного высказывания , обозначается символически чертой сверху ($A↖{-}$) или такими условными обозначениями, как ¬, "not" , и читается: «не А», «А ложно», «неверно, что А», «отрицание А» . Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖{-}$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B) истинно.

Операция, используемая относительно одной величины, называется унарной . Таблица значений данной операции имеет вид

Высказывание $A↖{-}$ ложно, когда А истинно, и истинно, когда А ложно.

Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖{-}$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.

2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В» ), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В , а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

A B A ∧ B
1 0 0
0 1 0
0 0 0
1 1 1

Высказывание А В истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В А В есть пересечение множеств А и В .

3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В» ), которая символически обозначается с помощью знака ∨ В) и читается: «А или В» . Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B . Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

Таблица истинности операции имеет вид

A B A B
1 0 1
0 1 1
0 0 0
1 1 1

Высказывание А В ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А В — это объединение множеств А и В , т. е. фигура, объединяющая и квадрат, и круг.

4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или» , употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А В ) и читается: «либо А, либо В» . Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

Таблица истинности операции имеет вид

А В А B
1 0 1
0 1 1
0 0 0
1 1 0

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если..., то» в сложное высказывание, которое символически обозначается с помощью знака → (А В ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В» . Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

Таблица истинности операции имеет вид

А В А В
1 0 0
0 1 1
0 0 1
1 1 1

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В , которое читается: «А эквивалентно B» . Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно» . Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

Таблица истинности операции эквивалентности имеет вид

А В А В
1 0 0
0 1 0
0 0 1
1 1 1

Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Приоритет выполнения логических операций следующий: отрицание («не» ) имеет самый высокий приоритет, затем выполняется конъюнкция («и» ), после конъюнкции — дизъюнкция («или» ).

С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А ), то вторник всегда наступает после понедельника (В )» — импликация А В , и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

Рассмотрим, например, построение составного высказывания из высказываний А и В , которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

Примеры решения задач

Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :

1) X = 1; 2) X = 12; 3) X = 3.

Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид

A B A → B
1 0 0
0 1 1
0 0 1
1 1 1

Отсюда получаем:

1) для X = 1:

((1 > 3) ∨ (1 < 3)) → (1 < 4) = ложь ∨ истина → истина = истина → истина = истина;

2) для X = 12:

((12 > 3) ∨ (12 < 3) → (12 < 4) = истина ∨ ложь → ложь = истина → ложь = ложь;

3) для X = 3:

((3 > 3) ∨ (3 < 3)) → (3<4) = ложь ∨ ложь → истина = ложь → истина = истина.

Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .

Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

  • выражения, которые используют операции сравнения («больше», «меньше», «равно», «не равно» и т. п.) и принимают логические значения (например, выражение а > b , где а = 5 и b = 7, равно значению «ложь»);
  • непосредственные логические выражения, связанные с логическими величинами и логическими операциями (например, A ∨ В ∧ С, где А = истина, B = ложь и C = истина).

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

  1. вычисление существующих функциональных зависимостей;
  2. выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
  3. выполнение операций сравнения (в произвольном порядке);
  4. выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

$1 ≤ a ∨ A ∨ sin(π/a - π/b) < 1 ∧ ¬B ∧ ¬(b^a + a^b > a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

4) sin(π/a - π/b) < 1 = sin(π/2 - π/3) < 1 = истина.

После этих вычислений окончательно получим: истина ∨ А ∧ истина ∧ ¬В ∧ ¬истина.

Теперь должны быть выполнены операции отрицания, затем логического умножения и сложения:

5) ¬В = ¬ложь = истина; ¬истина = ложь;

6) A ∧ истина ∧ истина ∧ ложь = истина ∧ истина ∧ истина ∧ ложь = ложь;

7) истина ∨ ложь = истина.

Таким образом, результат логического выражения при заданных значениях— «истина».

Примечание. Учитывая, что исходное выражение есть, в конечном итоге, сумма двух слагаемых, и значение одного из них 1 ≤ a = 1 ≤ 2 = истина, без дальнейших вычислений можно сказать, что результат для всего выражения тоже «истина».

Тождественные преобразования логических выражений

В алгебре логики выполняются основные законы, позволяющие производить тождественные преобразования логических выражений.

Закон Для ∨ Для ∧
Переместительный A ∨ B = B ∨ A A ∧ B = B ∧ A
Сочетательный A ∨ (B ∨ C) = (B ∨ A) ∨ C A ∧ (B ∧ C) = (A ∧ B) ∧ C
Распределительный A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C)
Правила де Моргана ${A ∨ B}↖{-}$ = $A↖{-} ∧ B↖{-}$ ${A ∧ B}↖{-}$ = $A↖{-} ∨ B↖{-}$
Идемпотенции A ∨ A = A A ∧ A = A
Поглощения A ∨ A ∧ B = A A ∧ (A ∨ B) = A
Склеивания (A ∧ B) ∨ (A↖{-} ∧ B) = B (A ∨ B) ∧ (A↖{-} ∨ B) = B
Операция переменной с ее инверсией $A ∨ A↖{-}$ = 1 $A ∧ A↖{-}$ = 0
Операция с константами A ∨ 0 = A
A ∨ 1 = 1
A ∧ 1 = A
A ∧ 0 = 0
Двойного отрицания $A↖{=}$ = A

Доказательства этих утверждений производят на основании построения таблиц истинности для соответствующих записей.

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определенному виду путем использования основных законов алгебры логики. Под упрощением формулы , не содержащей операций импликации и эквивалентности, понимают равносильное преобразование, приводящее к формуле, которая содержит либо меньшее по сравнению с исходной число операций, либо меньшее число переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т. п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Рассмотрим на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

1) X1 ∧ X2 ∨ X1 ∧ X2 ∪ ¬X1 ∧ X2 = X1 ∧ X2 ∨ ¬X1 ∧ X2 = (X1 ∨ ¬X1) ∧ X2 = 1 ∧ X2 = X2 .

Для преобразования здесь можно применить закон идемпотенции, распределительный закон; операцию переменной с инверсией и операцию с константой.

2) X1 ∨ X1 ∧ X2 = X1 ∨ (1 ∨ 1 ∧ X2) = X1 ∨ (1 ∨ X2) = X1 .

Здесь для упрощения применяется закон поглощения.

3) ¬(X1 ∧ X2) ∨ X2 = (¬X1 ∨ ¬X2) ∨ X2 = ¬X1 ∨ ¬X2 ∨ X2 = ¬X1 ∨ 1 = 1 .

При преобразовании применяются правило де Моргана, операция переменной с ее инверсией, операция с константой

Примеры решения задач

Пример 1. Найти логическое выражение, равносильное выражению A ∧ ¬(¬B ∨ C) .

Решение. Применяем правило де Моргана для В и С: ¬(¬B ∨ C) = B ∧ ¬C .

Получаем выражение, равносильное исходному: A ∧ ¬(¬B ∨ C) = A ∧ B ∧ ¬C .

Ответ: A ∧ B ∧ ¬C.

Пример 2. Указать значение логических переменных А, В, С, для которых значение логического выражения (A ∨ B) → (B ∨ ¬C ∨ B) ложно.

Решение. Операция импликации ложна только в случае, когд а из истинной посылки следует ложь. Следовательно, для заданного выражения посылка A ∨ B должна принимать значение «истина», а следствие, т. е. выражение B ∨ ¬C ∨ B , — «ложь».

1) A ∨ B — результат дизъюнкции — «истина», если хотя бы один из операндов — «истина»;

2) B ∨ ¬C ∨ B — выражение ложно, если все слагаемые имеют значение «ложь», т. е. В — «ложь»; ¬C — «ложь», а следовательно, переменная С имеет значение «истина»;

3) если рассмотреть посылку и учесть, что В — «ложь», то получим, что значение А — «истина».

Ответ: А — истина, В — ложь, С — истина.

Пример 3. Каково наибольшее целое число X, при котором истинно высказывание (35

Решение. Запишем таблицу истинности для операции импликации:

A B A → B
1 0 0
0 1 1
0 0 1
1 1 1

Выражение X < (X - 3) ложно при любых положительных значениях X. Следовательно, для того чтобы результатом импликации была «истина», необходимо и достаточно, чтобы выражение 35 < X · X также было ложно. Максимальное целое значение X, для которого 35 < X · X ложно, равно 5.

Ответ: X = 5.

Использование логических выражений для описания геометрических областей

Логические выражения могут быть использованы для описания геометрических областей. В этом случае задача формулируется так: записать для заданной геометрической области такое логическое выражение, которое принимает значение «истина» для значений x, y тогда и только тогда, когда любая точка с координатами (x; y) принадлежит геометрической области.

Рассмотрим описание геометрической области с помощью логического выражения на примерах.

Пример 1. Задано изображение геометрической области. Записать логическое выражение, описывающее множество точек, принадлежащих ей.

1) .

Решение. Заданную геометрическую область можно представить в виде набора следующих областей: первая область — D1 — полуплоскость ${x}/{-1} +{y}/{1} ≤ 1$, вторая — D2 — круг с центром в начале координат $x^2 + y^2 ≤ 1$. Их пересечение D1 $∩$ D2 представляет собой искомую область.

Результат: логическое выражение ${x}/{-1}+{y}/{1} ≤ 1 ∧ x^2 + y^2 ≤ 1$.

2)

Эту область можно записать так: |x| ≤ 1 ∧ y ≤ 0 ∧ y ≥ -1 .

Примечание. При построении логического выражения используются нестрогие неравенства, а это значит, что границы фигур также принадлежат заштрихованной области. Если использовать строгие неравенства, то границы учитываться не будут. Границы, не принадлежащие области, обычно изображаются пунктиром.

Можно решить обратную задачу, а именно: нарисовать область для заданного логического выражнения.

Пример 2. Нарисовать и заштриховать область, для точек которой выполняется логическое условие y ≥ x ∧ y + x ≥ 0 ∧ y < 2 .

Решение. Искомая область представляет собой пересечение трех полуплоскостей. Строим на плоскости (x, y) прямые y = x; y = -x; y = 2. Это границы области, причем последняя граница y = 2 не принадлежит области, поэтому ее наносим пунктирной линией. Для выполнения неравенства y ≥ x нужно, чтобы точки находились слева от прямой y = x, а неравенство y = -x выполняется для точек, которые находятся справа от прямой y = -x. Условие y < 2 выполняется для точек, лежащих ниже прямой y = 2. В результате получим область, которая изображена на рис.:

Использование логических функций для описания электрических схем

Логические функции очень удобны для описания работы электрических схем. Так, для схемы, представленной на рис., где значение переменной X — это состояние выключателя (если он включен, значение X — «истина», а если выключен — «ложь»), это значение Y — это состояние лампочки (если она горит — значение «истина», а если нет — «ложь»), логическая функция запишется так: Y = X . Функцию Y называют функцией проводимости.

Для схемы, представленной на рис., логическая функция Y имеет вид: Y = X1 ∪ X2, т. к. достаточно одного включенного выключателя, чтобы горела лампочка. В схеме на рис., для того чтобы горела лампочка, должны быть включены оба выключателя, следовательно, функция проводимости имеет вид: Y = X1 ∧ X2 .

Для более сложной схемы функция проводимости будет иметь вид: Y = (X11 ∨ (X12 ∧ X13)) ∧ X2 ∧ (X31 ∨ X32).

Схема также может содержать контакты на замыкание. В этом случае размыкаемый контакт как выключатель обеспечивает загорание лампочки, когда кнопка отпущена, а не нажата. Для таких схем размыкающий выключатель описывается отрицанием.

Две схемы называются равносильными , если через одну из них ток проходит тогда, когда он проходит и через другую. Из двух равносильных схем более простой считается схема, функция проводимости которой содержит меньшее число элементов. Задача нахождения наиболее простых схем среди равносильных очень важна.

Использование аппарата алгебры логики при проектировании логических схем

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера. Любая информация при обработке на компьютере представляется в двоичной форме, т. е. кодируется некоторой последовательностью 0 и 1. Обработку двоичных сигналов, соответствующих 0 и 1, выполняют в компьютере логические элементы. Логические элементы, которые выполняют основные логические операции И, ИЛИ, НЕ, представлены на рис.

Условные обозначения логических элементов являются стандартными и используются при составлении логических схем компьютера. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу компьютера.

Технически компьютерный логический элемент реализуется в виде электрической схемы, которая представляет собой соединение различных деталей: диодов, транзисторов, резисторов, конденсаторов. На вход логического элемента, который называют также вентилем, поступают электрические сигналы высокого и низкого уровней напряжения, на выход выдается один выходной сигнал также либо высокого, либо низкого уровня. Эти уровни соответствуют одному из состояний двоичной системы: 1 — 0; ИСТИНА — ЛОЖЬ. Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем. Работу логических схем описывают с помощью таблиц истинности. Условное обозначение на схеме ИЛИ знак «1» — от устаревшего обозначения дизъюнкции как «>=1» (значение дизъюнкции равно 1, если сумма двух операндов больше или равна 1). Знак «&» на схеме И является сокращенной записью английского слова and.

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным .

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности , т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы ${X1}↖{-} ∧ X2 ∨ {X1 ∨ X2}↖{-} ∨ X1$.

X1 X2 ${X1}↖{-}$ ${X1}↖{-}$ \ X2 X1 ∧ X2 ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ∨ X1
1 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 1 1 0 1 1
0 0 1 0 0 1 1 1

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной ; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной ; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой . Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

  1. в таблице истинности функции выбирают наборы аргументов, для которых логические формы равны 1 («истина»);
  2. все выбранные логические наборы как логические произведения аргументов записывают, последовательно соединив их между собой операцией логической суммы (дизъюнкции);
  3. для аргументов, которые являются ложными, в построенной записи проставляют операцию отрицания.

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

Ответ: F(X1, X2) = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

  1. в таблице истинности выбирают наборы аргументов, для которых логические формы равны 0 («ложь»);
  2. все выбранные логические наборы как логические суммы аргументов записывают последовательно, соединив их между собой операцией логического произведения (конъюнкции);
  3. для аргументов, которые являются истинными, в построенной записи проставляют операцию отрицания.

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

Таким образом, получена запись логической функции в КНФ.

Ответ: X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2 = X1 ∧ ${X1}↖{-}$ ∨ X1 ∧ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ ${X2}↖{-}$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ 0 = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

Пример 2 . Построить логическую функцию для заданной таблицы истинности:

Искомая формула: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 .

Ее можно упростить: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 = X2 ∧ (X1 ∨ ${X1}↖{-}$) = X2 ∧ 1 = X2.

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

X1 X2 X3 F(X1, X2, X3)
1 1 1 1 X1 ∧ X2 ∧ X3
1 0 1 0
0 1 1 1 ${X1}↖{-}$ ∧ X2 ∧ X3
0 0 1 0
1 1 0 1 X1 ∧ X2 ∧ ${X3}↖{-}$
1 0 0 1 X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$
0 1 0 0
0 0 0 0

Искомая формула: X1 ∧ X2 ∧ X ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∪ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$.

Формула достаточно громоздка, и ее следует упростить:

X1 ∧ X2 ∧ X3 ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∨ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ = X2 ∧ X3 ∧ (X1 ∨ ${X1}↖{-}$) ∨ X1 ∧ ${X3}↖{-}$ ∧ (X2 ∨ ${X2}↖{-}$) = X2 ∧ X3 ∨ X1 ∧ ${X3}↖{-}$.

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

X1 X2 X3 Y(X1, X2, X3)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок 2-й урок 3-й урок
Информатика 1 1 0
Математика 1 0 1
Физика 0 1 1

Из таблицы видно, что существуют два варианта искомого расписания:

  1. математика, информатика, физика;
  2. информатика, физика, математика.

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

  1. Борис — самый старший;
  2. играющий в футбол младше играющего в хоккей;
  3. играющие в футбол и хоккей и Петр живут в одном доме;
  4. когда между лыжником и теннисистом возникает ссора, Борис мирит их;
  5. Петр не умеет играть ни в теннис, ни в бадминтон.

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

Из таблицы видно, что в теннис может играть только Алексей.

Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Задание 1 #10050

\((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x)\)

Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 1.

1. Упростим \((x \wedge y) \vee (x \wedge \overline y).\)

По закону дистрибутивности \((y \wedge x) \vee (x \wedge \overline y)\) = \(x \wedge (y \vee \overline y).\) \(y \vee \overline y = 1\) (если \(y = 0,\) то \(\overline y \vee y = 1 \vee 0 = 1,\) если \(y = 1,\) то \(\overline y \vee y = 0 \vee 1 = 1).\) Тогда \(x \wedge (y \vee \overline y) = x \wedge 1 = x .\)

2. Упростим \((y\wedge z) \vee (z \wedge x).\) По закону дистрибутивности \((y\wedge z) \vee (z \wedge x) = z \wedge (y \vee x).\)

3. Получим: \((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x) = x \vee z \wedge (y \vee x).\)

4. В таблице истинности содержится 8 строчек (строк всегда \(2^n,\) где \(n\) - количество переменных). В нашем случае переменных 3.

5. Заполним таблицу истинности.

\[\begin{array}{|c|c|c|c|c|c|c|} \hline x & y & z & y \vee x & z \wedge (y \vee x) & F = x \vee z \wedge (y \vee x) \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}\]

Так как дизъюнкция \(x \vee z \wedge (y \vee x)\) истинна, если истинно хотя бы одно из входящих в нее высказываний, то для \(x = 1\) \(F = 1\) при любых \(y\) и \(z\) (строки 5-8 в таблице истинности).

Рассмотрим случай, когда \(x = 0.\) Тогда значение функции будет зависить от значения \(z \wedge (y \vee x).\) Если \(z \wedge (y \vee x)\) истинна, то и \(F\) истинна, если ложна, то \(F\) ложна. Рассмотрим случай, когда \(F = 1.\) Конъюнкция \((z \wedge (y \vee x))\) истинна, если все входящие в нее высказывания истинны, то есть \(y \vee x = 1\) и \(z = 1.\) \(x = 0,\) значит, \(y \vee x = 1,\) когда \(y = 1\) (строка 4).

Если же одно из высказываний, входящих в конъюнкцию, ложно, то вся конъюнкция ложна. Если \(x = 0\) и \(y = 0,\) то \(y \vee x = 0.\) Тогда \(z \wedge (x \vee y) = 0\) при любом \(z\) (строки 1-2). Так как \(x = 0,\) а второе высказывание, входящее в дизъюнкцию \((z \wedge (x \vee y)),\) тоже ложно, то и вся функция ложна. Если \(x = 0\) и \(y = 1,\) то \(y \vee x = 1.\) Если \(z = 0,\) \(z \wedge (y \vee x) = 0.\) Тогда \(F = 0\) (строка 3). Случай, когда \(z = 1,\) \(y = 1,\) \(x = 0,\) был рассмотрен в предыдущем абзаце.

Мы построили таблицу истинности. Видим, что в ней есть 5 наборов, при которых \(F = 1.\) Поэтому ответ: 5.

Ответ: 5

Задание 2 #10051

Логическая функция \(F\) задаётся выражением:

\((x \wedge \overline y \wedge z) \vee (x \rightarrow y)\)

Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 0.

\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & y & z & \overline y & x\wedge \overline y & x \wedge \overline y \wedge z & \overline x & \overline x \vee y & x \wedge \overline y \wedge z \vee \overline x \vee y \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline \end{array}\]

1. \(x \rightarrow y\) = \(\overline x \vee y.\)

2. Заметим, что при \(y = 1\) \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно выражение, входящее в нее (строки 3-4, 7-8 в таблице истинности). Аналогично при \(\overline x = 1,\) то есть при \(x = 0,\) \(F = 1\) (строки 1-4).

3. При \(x = 1\) и \(y = 0\) \(\overline x \vee y = 0,\) \(x \wedge \overline y = 1.\) При \(z = 1\) \(x \wedge \overline y \wedge z = 1\) и \(F = 1,\) так как истинно одно из выражений (строка 6), а при \(z = 0\) \(x \wedge \overline y \wedge z = 0\) и \(F = 0,\) так как оба выражения, входящие в дизъюнкцию, ложны (строка 5).

По построенной таблице истинности видим, что для одного набора \((x,\) \(y,\) \(z)\) \(F = 0.\)

Ответ: 1

Задание 3 #10052

Логическая функция \(F\) задаётся выражением:

\((\overline{z \vee \overline y}) \vee (w \wedge (z \equiv y)) \)

Составьте её таблицу истинности. В качестве ответа введите сумму значений \(z,\) \(y\) и \(w,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline w & y & z & \overline y & z \vee \overline y & \overline{z \vee \overline y} & z \equiv y & w \wedge (z \equiv y) & \overline z \vee \overline y \vee w \wedge (z \equiv y) \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ \hline \end{array}\]

1. \((\overline{z \vee \overline y}) = \overline z \wedge y \)

2. В таблице истинности будет \(2^3 = 8\) строк.

3. Если \(z = 1 \) и \(y = 1,\) \(то (z \equiv y) = 1 \) (так как эквивалентность истинна тогда и только тогда, когда оба высказывания одновременно ложны или истинны). \(\overline z \wedge y = 0\) \((0 \wedge 1 = 0).\) Если \(w = 1,\) \(w \wedge (z \equiv y) = 1\) \((1 \wedge 1 = 1)\) и \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно из входящих в нее высказываний (строка 8 в таблице истинности). Если \(w = 0,\) \(w \wedge (z \equiv y) = 0\) \((0 \wedge 1 = 0)\) и \(F = 0,\) так как оба высказывания, входящие в дизъюнкцию, ложны (строка 4).

4. Аналогично для \(z = 0, y = 0.\) \((z \equiv y) = 1,\) \(\overline z \wedge y = 0\) \((1 \wedge 0 = 0).\) Тогда снова значение функции будет зависеть от \(w.\) При \(w = 1\) \(w \wedge (z \equiv y) = 1,\) \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строка 5), а при \(w = 0\) \(w \wedge (z \equiv y) = 0,\) \(F = 0,\) так как все высказывания ложны (строка 1).

5. Если \(z = 0\) и \(y = 1,\) то \(\overline z \wedge y = 1\) \((1 \wedge 1 = 1).\) Так как \((z \equiv y) = 0\) (ведь значения \(z\) и \(y\) различны), будет ложна при любом \(w.\) Тогда, так как значение переменной \(w\) не будет влиять на значение функции, при \(z = 0\) и \(y = 1\) \(w\) может быть как 0, так и 1. \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строки 3, 7).

6. Если \(z = 1\) и \(y = 0,\) то \(\overline z \wedge y = 0 \wedge 0 = 0.\) Так как \((z \equiv y) = 0,\) \(w \wedge (z \equiv y) = w \wedge 0\) будет ложна при любом \(w\) (то есть \(w\) может быть и 0 и 1). Значит, при \(z = 1\) и \(y = 0\) \(F\) всегда будет ложна (так как оба высказывания, входящих в дизъюнкцию, ложны, строки 2, 5).

7. \(F = 1\) при следующих наборах \(z,\) \(y,\) \(w:\) (0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 1, 0). Если просуммировать значения, то получим 7.

Ответ: 7

Задание 4 #10053

Логическая функция \(F\) задаётся выражением:

\(a \wedge ((\overline{b \wedge c}) \vee (a \wedge \overline b) \vee (\overline c \wedge a)) \)

Составьте её таблицу истинности. В качестве ответа введите сумму значений \(a,\) \(b\) и \(c,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline \end{array}\]

1. В таблице истинности \(2^3 = 8\) строк.

2. При \(a = 0\) \(F = 0\) при любых значениях \(b\) и \(c,\) так как конъюнкция истинна тогда и только тогда, когда все высказывания, входящие в нее, истинны (строки 1-4 в таблице истинности).

3. Рассмотрим случаи, когда \(a = 1.\) Если \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = 1,\) то \(F = 1\) (так как оба высказывания будут истинны), иначе \(F = 0\) (так как одно высказывание будет ложно). По закону де Моргана \(\overline{b \wedge c} = \overline b \vee \overline c.\) Тогда, учитывая, что \(a = 1,\) \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = \overline b \vee \overline c \vee \overline b \vee \overline c = \overline b \vee \overline c.\)

4. Если \(\overline b = 0\) и \(\overline c = 0\) (одновременно, то есть при \(b = 1\) и \(c = 1),\) то \(\overline b \vee \overline c = 0\) и \(F = 0\) (строка 8). В остальных случаях \(\overline b \vee \overline c = 1\) и \(F = 1\) (строки 5-7).

5. Наборы \((x,\) \(y,\) \(z),\) при которых \(F = 1:\) (1, 0, 0), (1, 1, 0), (1, 0, 1). Сумма значений равна 5.

Ответ: 5

Задание 5 #10054

Логическая функция \(F\) задаётся выражением:

\(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) \)

Составьте таблицу истинности. В качестве ответа введите сумму значений \(a,\) при которых \(F = 0.\)

\[\begin{array}{|c|c|c|c|c|} \hline a & b & c & d & F\\\hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 \\ \hline \end{array}\]

1. По закону дистрибутивности \((a \wedge b) \vee (b \wedge c) = b \wedge (a \vee c).\)

2. \(d \rightarrow a = \overline d \vee a.\)

3. \(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) = b \wedge (a \vee c) \equiv (\overline d \vee a \vee (b \wedge \overline c)) .\)

4. Если \(b = 0,\) то левая часть функции равна 0 \((0 \wedge (a \vee c) = 0).\) \(b \wedge \overline c = 0 \wedge \overline c = 0.\) Значит, для \(b = 0\) \(c\) может быть любым, так как не влияет на значение функции. \(F = 1,\) если \(\overline d \vee a = 0\) (тогда одно из выражений, входящих в дизъюнкцию, будет истинно). Это выполняется при \(\overline d = 0\) \((d = 1)\) и \(a = 0\) (строки 2, 3). При других \(d\) и \(a\) \(\overline d \vee a = 0,\) значит, \(F = 0,\) так как операция эквивалентности истинна тогда и только тогда, когда оба высказывания одновременно истинны или ложны (строки 1, 10 в таблице истинности).

5. Если \(b = 1,\) то \(b \wedge (a \vee c) = 1 \wedge (a \vee c) = a \vee c.\) \(b \wedge \overline c = 1 \wedge \overline c = \overline c.\) Тогда имеем, что \(a \vee c \equiv \overline d \vee a \vee \overline c.\) Если \(a = 1,\) то \(a \vee c = 1 \) и \(\overline d \vee a \vee \overline c = 1,\) так как дизъюнкция истинна, если хотя бы одно из выражений истинно (а в обеих дизъюнкциях есть \(a = 1).\) Тогда, если \(b = 1\) и \(a = 1,\) \(F = 1\) при любых \(c\) и \(d\) (строки 5, 7, 8, 11).

Если \(a = 0,\) то \(a \vee c = 0 \vee c = c,\) а \(\overline d \vee a \vee \overline c = \overline d \vee \overline c.\) Имеем: \(c \equiv (\overline d \vee \overline c).\) При \(c = 1\) \(1 \equiv \overline d.\) При \(d = 1\) \(F = 0,\) так как высказывания различны (строка 4), при \(d = 0\) \(F = 1,\) так как оба высказывания истинны (строка 14). При \(c = 0\) \(0 \equiv (\overline d \vee 1).\) Так как \(\overline d \vee 1\) - дизъюнкция, в которой одно из высказываний истинно, то и вся дизъюнкция истинна. Тогда \(0 \equiv 1,\) что неверно, значит, \(F = 0\) при любых \(d\) (строка 9, 16).

По построенной таблице видим, что \(F = 0\) при \(a = 0\) (строки 1, 4, 9, 10, 16) и при \(a = 1\) (строки 6, 12, 13, 15). Тогда сумма значений равна 0 * 5 + 1 * 4 = 4.

Ответ: 4

Задание 6 #10055

Логическая функция \(F\) задаётся выражением:

\((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) \)

Составьте таблицу истинности. В качестве ответа введите сумму значений \(c,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline \end{array}\]

В таблице \(2^3 = 8\) строк.

1. Импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Значит, \(F = 0,\) если a \(c \wedge (b \vee a) = 0.\) В остальных случаях \(F = 1.\) Рассмотрим, при каких значениях \(a,\) \(b\) и \(c\) \(a \equiv (b \vee \overline c) = 1\) (если \(a \equiv (b \vee \overline c) = 0,\) то \(F = 1\) при любом значении \(c \wedge (b \vee a) = 0).\)

Если \(a = 0,\) то, чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) необходимо \(b \vee \overline c = 0\) (ведь операция эквивалентности истинна тогда и только тогда, когда оба высказывания истинны или оба ложны). Чтобы дизъюнкция \((b \vee \overline c)\) была ложна, оба высказывания, входящие в нее, должны быть ложны, то есть \(b = 0\) и \(\overline c = 0\) \((c = 1).\) При таких значениях \(c \wedge (b \vee a) = 1 \wedge (0 \vee 0) = 0.\) Тогда \((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) = 1 \rightarrow 0 = 0,\) \(F = 0.\) Это соответствует строке 2 из таблицы истинности.

Если \(a = 1,\) то чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) \(b \vee \overline c = 1.\) Это выполняется в нескольких случаях. Если \(b = 1,\) то \(c\) может быть равна и нулю и единице, ведь одно из высказываний, входящих в дизъюнкцию, уже истинно. При \(c = 1\) \(c \wedge (b \vee a) = 1 \wedge 1 = 1,\) тогда \(F = 1\) (так как \(1 \rightarrow 1 = 1,\) строка 7). При \(c = 0\) \(c \wedge (b \vee a) = 0 \wedge 1 = 0,\) значит, \(F = 0\) \((1 \rightarrow 0 = 0,\) строка 6). Если \(b = 0,\) то \(\overline c = 1\) \((c = 0,\) тогда одно из высказываний, входящих в дизъюнкцию, будет истинным). В таком случае \(c \wedge (b \vee a) = 0 \wedge (0 \vee 1) = 0.\) \(F = 0,\) так как \(1 \rightarrow 0 = 0\) (строка 5).

2. При других значениях \(a,\) \(b\) и \(c\) \(F = 1,\) потому что \(a \equiv (b \vee \overline c) = 0\) (строки 1, 3, 7, 8).

3. Из составленной таблицы истинности видим, что \(F = 1\) при \(c = 0\) (строки 1, 4) и при \(c = 1\) (строки 3, 7, 8). Сумма значений равна 0 * 2 + 1 * 3 = 3.\(2^4 = 16\) строк.

1. Так как конъюнкция ложна, если ложно хотя бы одно из высказываний, то при \(d = 0\) \(F = 0\) при любых \(a,\) \(b\) и \(c\) (строки 1, 6-10, 12, 14 в таблице истинности).

2. Рассмотрим случай, когда \(d = 1.\) Тогда \((a \rightarrow b) \wedge (b \equiv c) \wedge d = (a \rightarrow b) \wedge (b \equiv c) \wedge 1 = (a \rightarrow b) \wedge (b \equiv c).\) При \(b = 1\) \(a \rightarrow b = a \rightarrow 1 = 1\) при любом \(a,\) так как импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Если \(c = 1,\) то \(b \equiv c = 1,\) так как операция эквивалентности истинна, когда оба выражения истинны или оба ложны, и \(F = 1\) (так как все выражения, входящие в конъюнкцию, истинны). Это соответствует строкам 4 и 5. Если \(c = 0,\) то \(b \equiv c = 0,\) \(F = 0,\) так как одно из выражений, входящее в конъюнкцию, ложно (строки 11 и 16).

При \(b = 0:\) если \(a = 1,\) то \(a \rightarrow b = 1 \rightarrow 0 = 0,\) тогда одно из выражений, входящих в конъюнкцию, ложно, и \(F = 0\) при любом \(c\) (строки 13 и 15). Если \(a = 0,\) то \(a \rightarrow b = 0 \rightarrow 0 = 1.\) Если \(c = 0,\) то \(b \equiv c = 0 \equiv 0 = 1,\) \(F = 1,\) так как оба выражения, входящих в конъюнкцию, истинны (строка 2). Если \(c = 1,\) то \(b \equiv c = 0 \equiv 1 = 0,\) \(F = 0,\) так как одно из выражений, входящих в конъюнкцию, ложно (строка 3).

Таким образом, \(F = 1\) при \(d = 1\) (строки 2, 4, 5). Сумма значений \(d\) равна 1 * 3 = 3.

Построение таблиц истинности сложных высказываний.

Приоритет логических операций

1) инверсия 2) конъюнкция 3) дизъюнкция 4) импликация и эквивалентность

Как составить таблицу истинности?

Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.

Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре:

(0, 0), (0, 1), (1, 0), (1, 1).

Если формула содержит три переменные, то возможных наборов значений переменных восемь (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Количество наборов для формулы с четырьмя переменными равно шестнадцати и т. д.

Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.

Примеры.

1. Составим таблицу истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 1 , то есть является тождественно истинной .

2. Таблица истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0 , то есть является тождественно ложной .

3. Таблица истинности для формулы 96%" style="width:96.0%">

Из таблицы видно, что формула 0 " style="border-collapse:collapse;border:none">

Вывод: получили в последнем столбце все единицы. Значит, значение сложного высказывания истинно при любых значениях простых высказываний К и С. Следовательно, учитель рассуждал логически правильно.



Понравилась статья? Поделитесь ей