Контакты

Цифровой тахометр на микроконтроллере PIC16F628. Простой универсальный тахометр на микроконтроллере ATtiny2313. Радиотехника, электроника и схемы своими руками Простой тахометр на пик контроллере

Добрый день.
Выношу на Ваше рассмотрение схему простенького цифрового тахометра на AVR ATtiny2313 , КР514ИД2 , и оптопаре спроектированного мною.
Сразу оговорюсь: аналогичных схем в интернете много. У каждой реализации свои плюсы и минусы. Возможно, кому-то мой вариант подойдет больше.

Начну, пожалуй, с тех. задания.
Задача : нужно сделать цифровой тахометр для контроля оборотов электрического двигателя станка.
Вводные условия : Есть готовый реперный диск на 20 отверстий от лазерного принтера. В наличии много оптопар от сломанных принтеров. Средние (рабочие) обороты 4 000-5 000 оборотов/минуту. Погрешность отображаемых результатов не должна превышать ± 100 оборотов.

Ограничение : питание для блока управление составляет 36В (тахометр будет установлен в один корпус с блоком управления – об этом ниже).

Маленькое лирическое отступление. Это станок моего друга. На станке установлен электромотор PIK-8, обороты которого контролируются согласно найденной в интернете и модифицированной схеме. По просьбе друга и был разработан простенький тахометр для станка.

Изначально в схеме планировалось применить ATMega16, но рассмотрев условия, решено было ограничиться ATtiny2313, работающего от внутреннего (RC) генератора на частоте 4 Мгц.

Общая схема выглядит следующим образом:

Как видно, ничего сложного. Для преобразования двоичного кода в семисегментный, я применил дешифратор КР514ИД2, это дает сразу три плюса.

  • Во первых – экономия места в памяти ATtiny2313 за счет уменьшения рабочего кода (т.к. процедура программного преобразования двоичного кода в семисегментный отсутствует в прошивке за ненадобностью).
  • Во вторых: уменьшение нагрузки на выходы ATtiny2313, т.к. светодиоды «засвечивает» КР514ИД2 (при высвечивании цифры 8 максимальное потребление составит 20-30 мА (типичное для одного светодиода) * 7 = 140-210 мА что «много» для ATtini2313 с её полным паспортным максимальным (нагруженным) потреблением 200 мА).
  • В третьих – уменьшено число «занятых» ног микроконтроллера, что дает нам возможность в будущем (при необходимости) модернизировать схему путём добавления новых возможностей.

Сборка устройства осуществлена на макетной плате. Для этого была разобрана завалявшаяся в закромах плата от нерабочей микроволновой печи. Цифровой светодиодный индикатор, ключевые транзисторы (VT1-VT4) и ограничительные резисторы (R1 – R12) были взяты комплектом и перенесены на новую плату. Все устройство собирается, при наличии необходимых компонентов, с перекурами за пол часа. Обращаю внимание: у микросхемы КР514ИД2 плюсовая ножка питания - 14, а минус - 6 (отмечены на схеме) . Вместо КР514ИД2 можно применить любой другой дешифратор двоичного кода в семисегментный с питанием от 5В. Я взял то, что было под рукой.
Выводы «h» и «i» цифрового светодиодного индикатора отвечают за две точки по центру между цифрами, не подключены за ненадобностью.
После сборки и прошивки, при условии отсутствия ошибок монтажа, устройство начинает работать сразу после включения и в настройке не нуждается.

При необходимости внесения изменений в прошивку тахометра на плате предусмотрен разъем ISP.

На схеме подтягивающий резистор R12, номиналом 30 кОм, подобран опытным путём для конкретной оптопары. Как показывает практика – для разных оптопар он может отличаться, но среднее значение в 30 кОм должно обеспечить устойчивую работу для большинства принтерных оптопар. Согласно документации к ATtiny2313, величина внутреннего подтягивающего резистора составляет от 20 до 50 кОм в зависимости от реализации конкретной партии микроконтроллеров, (стр. 177 паспорта к ATtiny2313), что не совсем подходит. Если кто захочет повторить схему, может для начала включать внутренний подтягивающий резистор, возможно у Вас, для Вашей оптопары и вашего МК работать будет. У меня, для моего набора не заработало.

Так выглядит типичная оптопара от принтера.

Светодиод оптопары запитан через ограничивающий резистор на 1К, который я разместил непосредственно на плате с оптопарой.
Для фильтрации пульсаций напряжения на схеме два конденсатора, электролитический на 220 мкФ х 25В (что было под рукой) и керамический на 0,1 мкФ, (общая схема включения микроконтроллера взята из паспорта ATtiny2313).

Для защиты от пыли и грязи плата тахометра покрыта толстым слоем автомобильного лака.

Замена компонентов.
Можно применить любой светодиодный индикатор на четыре цифры, либо два сдвоенных, либо четыре поодиночных. На худой конец, собрать индикатор на отдельных светодиодах.

Вместо КР514ИД2 можно применить КР514ИД1 (которая содержит внутри токоограничивающие резисторы), либо 564ИД5, К155ПП5, К155ИД9 (при параллельном соединении между собой ножек одного сегмента), или любой другой преобразователь двоичного в семисегментный (при соответствующих изменениях подключения выводов микросхем).

При условии правильного переноса монтажа на МК ATMega8/ATMega16 данная прошивка будет работать, как и на ATtiny2313, но нужно подправить код (изменить названия констант) и перекомпилировать. Для других МК AVR сравнение не проводилось.

Транзисторы VT1-VT4 – любые слаботочные, работающие в режиме ключа.

Принцип работы основан на подсчете количества импульсов полученных от оптопары за одну секунду и пересчет их для отображения количества оборотов в минуту. Для этого использован внутренний счетчик Timer/Counter1 работающий в режиме подсчета импульсов поступающих на вход Т1 (вывод PD5 ножка 9 МК). Для обеспечения стабильности работы, включен режим программного подавления дребезга. Отсчет секунд выполняет Timer/Counter0 плюс одна переменная.

Расчет оборотов , на чем хотелось бы остановиться, происходит по следующей формуле:
M = (N / 20) *60,
где M – расчетные обороты в минуту (60 секунд), N – количество импульсов от оптопары за одну секунду, 20 – число отверстий в реперном диске.
Итого, упростив формулу получаем:
M = N*3.
Но! В микроконтроллере ATtiny2313 отсутствует функция аппаратного умножения. Поэтому, было применено суммирование со смещением.
Для тех, кто не знает суть метода:
Число 3 можно разложить как
3 = 2+1 = 2 1 + 2 0 .
Если мы возьмем наше число N сдвинем его влево на 1 байт и приплюсуем еще одно N сдвинутое влево на 0 байт – получим наше число N умноженное на 3.
В прошивке код на AVR ASM для двухбайтной операции умножения выглядит следующим образом:

Mul2bytes3:
CLR LoCalcByte //очищаем рабочие регистры
CLR HiCalcByte
mov LoCalcByte,LoInByte //грузим значения полученные из Timer/Counter1
mov HiCalcByte,HiInByte
CLC //чистим быт переноса
ROL LoCalcByte //сдвигаем через бит переноса
ROL HiCalcByte
CLC
ADD LoCalcByte,LoInByte //суммируем с учетом бита переноса
ADC HiCalcByte,HiInByte
ret

Проверка работоспособности и замер точности проводился следующим образом. К вентилятору компьютерного куллера был приклеен картонный диск с двадцатью отверстиями. Обороты куллера мониторились через BIOS материнской платы и сравнивались с показателями тахометра. Отклонение составило порядка 20 оборотов на частоте 3200 оборотов/минуту, что составляет 0,6%.

Вполне возможно, что реальное расхождение составляет меньше 20 оборотов, т.к. измерения материнской платы округляются в пределах 5 оборотов (по личным наблюдениям для одной конкретной платы).
Верхний предел измерения 9 999 оборотов в минуту. Нижний предел измерения, теоретически от ±10 оборотов, но на практике не замерялся (один импульс от оптопары в секунду дает 3 оборота в минуту, что, учитывая погрешность, теоретически должно правильно измерять скорость от 4 оборотов в минуту и выше, но на практике данный показатель необходимо завысить как минимум вдвое).

Отдельно остановлюсь на вопросе питания.
Вся схема питается от источника 5В, расчетное потребление всего устройства не превышает 300 мА. Но, по условиям ТЗ, тахометр конструктивно должен находится внутри блока управления оборотами двигателя, а к блоку от ЛАТРа поступает постоянное напряжение 36В., чтобы не тянуть отдельный провод питания, внутри блока установлена LM317 в паспортном включении, в режиме понижения питания до 5В (с ограничивающим резистором и стабилитроном для защиты от случайного перенапряжения). Логичнее было бы использовать ШИМ-контроллер в режиме step-down конвертера, на подобии МС34063, но у нас в городе купить такие вещи проблематично, поэтому, применяли то, что смогли найти.

Фотографии платы тахометра и готового устройства.


Еще фотографии







К сожалению, сейчас нет возможности сфотографировать на станке.

После компоновки плат и первой пробной сборки, коробка с устройством отправилась на покраску.

В случае, если у Вас тахометр не заработал сразу после включения, при заведомо верном монтаже:

1) Проверить работу микроконтроллера, убедится, что он работает от внутреннего генератора. Если схема собранна правильно – на циферблате должно отображаться четыре нуля.

2) Проверить уровень импульсов от оптопары, при необходимости подобрать номинал резистора R12 или заменить схему подключения оптопары. Возможен вариант обратного подключения оптотранзистора с подтяжкой к минусу, с включенным или нет внутренним подтягивающим резистором МК. Также возможно применить транзистор в ключевом (инвертирующем) режиме работы.
оптопара

  • AVR
  • Добавить метки

    Тахометр предназначен для измерения оборотов практически любого двигателя. Начиная от мопедного 1-целиндрового двухтактного и заканчивая 16-ти целиндровым 4-х тактным двигателем. Индикация на 4-х разрядном цифровом индикаторе, точность имерения 50
    оборотов в минуту.

    После включения питания - тахометр сразу начинает измерять обороты. Первое нажатие кнопки - вызовет индикацию установленных количества импульсов на 1 оборот (по умолчанию 2 имп на 1 оборот, что соответствует 4-х тактному 4-х целиндровому двигателю). На дислее будет Р-2,0. Повторное нажатие кнопки, вызовет перебор всех допустимых значений - от 0,5 до 8 импульсов на 1 оборот. Пусть кажется немного странно - 0,5 импулсов, но это всего лишь означает что 1 имульс будет за 2 оборота. После установки нужного количества импульсов, через примерно 5 секунд - прибор запишит изменения в энергонезависимой памяти EEPROM (т.е. при повторном включении питания, не требуе вновь устанавливать количество импульсов), и перейдет в режим измерения оборотов с вновь установленными количеством импульсов.

    Печатная плата с двух частей

    Фото от lawyer

    Что такое вообще тахометр ? Тахометр - это устройство, используемое для измерения об/мин (обороты в минуту) любого вращающегося тела. Тахометры делают на основе контактных или безконтактных. Бесконтактные оптические тахометры обычно используют лазерный или инфракрасный луч для контроля вращения любого тела. Это делается путем вычисления времени, затраченного на одно вращение. В этом материале, взятом на одном английском сайте, мы покажем вам, как сделать портативный цифровой оптический тахометр с помощью Arduino Uno . Рассмотрим расширенную версию прибора с ЖК-дисплеем и модифицированным кодом.

    Схема тахометра на микроконтроллере

    Список деталей для схемы

    • Микросхема - Arduino
    • Резисторы - 33k, 270 Ом, 10k потенциометр
    • LED элемент - синий
    • ИК-светодиод и фотодиод
    • 16 x 2 LCD экран
    • 74HC595 регистр сдвига

    Тут вместо щелевого датчика задействован оптический - отражение луча. Так им образом не придется беспокоиться о толщине ротора, количество лопастей не изменит показания, и он может считывать обороты барабана - а щелевой датчик не может.

    Итак, прежде всего для датчика вам потребуется излучающий ИК-светодиод и фотодиод. Как его собрать - показано в пошаговой инструкции. Нажимаем на фото для увеличения размера.

    • 1. Для начала нужно зашкурить светодиод и фотодиод, чтобы сделать их плоскими.
    • 2. Затем сложите полоску бумаги лист, как показано на рисунке. Сделайте две такие структуры так, чтобы светодиод и фотодиод плотно сесть в него. Соедините их вместе клеем и покрасьте в черный цвет.
    • 3. Вставить светодиод и фотодиод.
    • 4. Склеить их с помощью суперклея и припаять провода.

    Номиналы резисторов могут различаться в зависимости от того, какой фотодиод вы используете. Потенциометр помогает уменьшить или увеличить чувствительность датчика. Припаяйте провода датчика как показано на рисунке.

    Схема тахометра использует 8-разрядный регистр сдвига 74HC595 с LCD дисплеем 16х2. Сделайте в корпусе небольшое отверстие, чтобы зафиксировать LED индикатор.

    Припаяйте 270-омный резистор на светодиод и вставьте в контакт 12 Arduino. Датчик введён в кубическую трубку, чтобы дать дополнительную механическую прочность.

    Всё, устройство готово для калибровки и программирования. Скачать программу вы можете по этой ссылке .

    Видео работы самодельного тахометра


    Охранное устройство с высоким напряжением - электрический ежик. Сегодня мы продолжим беседы про конструкции которые нужны для оxраны нашего жилища. Устройство, которое мы сейчас будем рассматривать предназначено для оxраны квартиры, офиса, дачи и автомобиля. Называется устройство - высоковольтный электрический ежик!

    Этот цифровой тахометр пригоден для подсчета количества оборотов практически любого типа двигателя внутреннего сгорания. Погрешность измерения тахометра составляет всего 50 оборотов/минуту. Для показа результата используется четырехразрядное светодиодное табло.
    Для настройки режима работы необходимо использовать кнопку «Select». Первое нажатие выводит на табло текущий режим работы. Режимом работы по умолчанию является третий, когда датчик выдает два импульса за оборот маховика. Соответственно, на табло появится надпись Р-2,0.

    Каждое последующее нажатие кнопки переключает режим работы тахометра на следующий. Всего их девять: 0.5, 1, 2, 3, 4, 5, 6, 7, 8 имп./оборот соответственно, они устанавливают количество импульсов выдаваемых датчиком за один оборот маховика. Чем выше количество импульсов, тем точнее производится измерение.

    После выбора режима работы необходимо подождать 5-10 секунд. За это время тахометр произведет запись режима работы в память микроконтроллера и перейдет в рабочий режим. В дальнейшее тахометр будет сразу при подаче питания переходить в рабочий режим. Если возникает необходимость перенастроить тахометр, то надо нажать кнопку «Select» и произвести настройку тахометра еще раз.

    Стоит обратить внимание на параметры и устройство входной цепи. Для конкретного типа зажигания возможны некоторые корректировки номиналов, из-за разных устройств зажигания в различных видах авто. Это необходимо, чтобы тахометр хорошо работал с основными гармониками и не реагировал на высшие гармоники. Без такой корректировки точная работа тахометра невозможна.

    Обновленная версия прошивки включает в себя функцию проверки индикаторов. Это необходимо для проведения двухсекундного теста выявления неисправности датчиков.

    Прикрепленные файлы:

    Прошивка

    Простой автоусилитель моноблок на TDA1560Q Автомобильный бездроссельный БП на IRS2153 для ноутбуков и мобильников Внешний USB-разъем в автомагнитоле

    Простой универсальный тахометр на микроконтроллере ATtiny2313

    Этот простой тахометр на ATtiny2313 умеет считать количество оборотов любых двигателей, будь то многофазные, многотактные и т.п. Он может быть полезен в авто- мототехнике, для отображения оборотов двигателя. При этом совершенно не имеет значения, сколько тактов или цилиндров имеет двигатель. Его также можно использовать совместно с электронными контроллерами электродвигателей, будь то одно- или трёхфазные.

    Схема тахометра очень простая - один микроконтроллер ATtiny2313 и четырёхсимвольный светодиодный индикатор. Транзисторные ключи в целях упрощения отсутствуют. Индикатор можно использовать как с общим катодом, так и с общим анодом - это выбирается в исходнике. Тахометр может подсчитывать обороты как в секунду, так и в минуту, что делает его полностью универсальным.

    Дополнительно устройство имеет возможность программного управления яркостью: обычная и пониженная. Если джампер открыт, то устанавливается обычная яркость. При замыкании контактов яркость уменьшается.


    Нажмите для увеличения
    Перейдём непосредственно к схеме. Если устройство подключается непосредственно к контроллеру двигателя с TTL-уровнями, то импульсы можно подавать просто на вывод 6 микроконтроллера. В противном случае следует выполнить простейший преобразователь уровня на транзисторе.

    Для получения и стабилизации напряжения питания +5 вольт применён линейный стабилизатор 1117 с низким падением напряжения для большей экономичности.

    В качестве светодиодного индикатора применён индикатор от микроволновки с общим анодом. Так как он уже содержит в себе резисторы на 220 Ом, то на печатной плате они не предусмотрены.


    На верхней стороне печатной платы имеются аж 10 перемычек, но они весьма легко устанавливаются.


    С обратной стороны установлены SMD-компоненты: это два конденсатора по 22 пФ для кварцевого резонатора, микросхема стабилизатора и фильтрующие конденсаторы.

    Кварцевый резонатор для микроконтроллера ATtiny2313 можно устанавливать на 8 или 4МГц, это задаётся в исходнике и управляет прескалером.

    Режим отображения оборотов - в секунду или в минуту - задаётся аналогично, в исходнике. Для отображения количества оборотов в минуту рассчитанное количество оборотов в секунду просто программно умножается на 60. Имеется возможность программного округления расчитаных значений. Эти нюансы прокомментированы в исходном коде.

    При прошивке микроконтроллера необходимо установить фьюзы:

    CKSEL1=0
    BODLEVEL0=0
    BODLEVER1=0
    SPMEN=0

    Исходник написан на языке C в Codevision AVR. Он был позаимствован из другого проекта - тахометра для трёхлопастного вертолёта.

    Коротко о настройке: необходимо заранее определить, какое количество импульсов за 1 оборот будет подаваться на вход тахометра. Например, если их источником будет контроллер трёхфазного мотора на LB11880 , то он выдаёт по три импульса на каждый оборот шпинделя. Поэтому в исходном коде следует указать это значение.

    Выбор индикатора - с общим анодом или с общим катодом (ненужное значение - закомментировать):

    //#define Anode
    #define Cathode

    Количество тахометрических импульсов на 1 оборот вала:

    #define byBladeCnt 2

    Выбор частоты кварцевого резонатора - 0x00 для 4МГц, 0x01 - для 8МГц:

    #define Prescaler 0x01

    Выбор отображения оборотов в минуту:

    lTmp = (62500L * 60L * (long)wFlashCnt);

    Для отображения количества оборотов в секунду необходимо убрать умножение на 60:

    lTmp = (62500L * (long)wFlashCnt);

    Для того, чтобы отключить округление значений, нужно закомментировать следующие строки:

    If (byDisplay > 4)
    {
    wRpm++;
    R += 10;
    }

    Так как в этой конкретной конструкции применён весьма специфический индикатор, то разводка печатной платы не прикладывается.



    Понравилась статья? Поделитесь ей