Контакты

Подключение твс. Источник высокого напряжения из тдкс

Внимание! Умножитель дает очень большое ПОСТОЯННОЕ напряжение! Это реально опасно, поэтому если решите повторить - будь предельно аккуратны и соблюдайте технику безопасности. После опытов выход умножителя обязательно разряжать! Установка запросто может убить технику, цифрой снимать только из далека, а опыты проводить подальше от компьютера и прочих бытовых приборов.

Это устройство является логическим завершением темы, по использованию строчного трансформатора ТВС-110ЛА, и обобщением статьи и темы форума .

Полученное в итоге устройство нашло применение в различных экспериментах, где требуется высокое напряжение. Окончательная схема устройства приведена на рис.1

Схема очень проста, и представляет собой обычный блокинг-генератор. Без высоковольтной катушки и умножителя может использоваться там, где нужно переменное высокое напряжение с частотой в десятки Гц, например ее можно использовать для питания ЛДС или для проверки подобных ламп. Более высокое переменное напряжение получается с использованием высоковольтной обмотки. Для получения высокого постоянного напряжения использован умножитель УН9-27.

Рис.1 Принципиальная схема.


Фото 1. Внешний вид источника питания на ТВС-110


Фото 2. Внешний вид источника питания на ТВС-110


Фото 3. Внешний вид источника питания на ТВС-110


Фото 4. Внешний вид источника питания на ТВС-110


Сейчас очень часто можно найти на помойке устаревшие кинескопные телевизоры, с развитием технологий они стаи не актуальны, поэтому теперь от них в основном избавляются. Пожалуй, каждый видел на задней стенке такого телевизора надпись в духе «Высокое напряжение. Не открывать». И висит она там не с проста, ведь в каждом телевизоре с кинескопом имеется весьма занятная вещица, называемая ТДКС. Аббревиатура расшифровывается как «трансформатор диодно-каскадный строчный», в телевизоре он служит, в первую очередь, для формирования высокого напряжения для питания кинескопа. На выходе такого трансформатора можно получить постоянное напряжение величиной аж 15-20 кВ. Переменное напряжение с высоковольтной катушки в таком трансформаторе увеличивается и выпрямляется с помощью встроенного диодно-конденсаторного умножителя.
Выглядят трансформаторы ТДКС вот так:


Толстый красный провод, отходящий от верхушки трансформатора, как не трудно догадаться, и предназначен для снятия с него высокого напряжения. Для того, чтобы запустить такой трансформатор, необходимо намотать на него свою первичную обмотку и собрать не сложную схему, которая зовётся ZVS-драйвером.

Схема

Схема представлена ниже:


Эта же схема в другом графическом представлении:


Несколько слов о схеме. Ключевое её звено – полевые транзисторы IRF250, сюда хорошо подойдут так же IRF260. Вместо них можно ставить и другие аналогичные полевые транзисторы, но лучше всего в этой схеме себя зарекомендовали именно эти. Между затвором каждого из транзисторов и минусом схемы устанавливаются стабилитроны на напряжение 12-18 вольт, я поставил стабилитроны BZV85-C15, на 15 вольт. Также к каждому из затворов подключаются ультрабыстрые диоды, например, UF4007 или HER108. Между стоками транзисторов подключается конденсатор 0,68 мкФ на напряжение не меньше 250 вольт. Его ёмкость не так критична, можно спокойно ставить конденсаторы в диапазоне 0,5-1 мкФ. Через этот конденсатор протекают довольно значительные токи, поэтому возможен его нагрев. Желательно поставить несколько конденсаторов параллельно, либо же взять конденсатор на большее напряжение, 400-600 вольт. На схеме присутствует дроссель, номинал которого также не сильно критичен и может находиться в пределах 47 – 200 мкГн. Можно намотать 30-40 витков провода на ферритовом колечке, работать будет в любом случае.

Изготовление





Если дроссель сильно нагревается, значит следует убавить количество витков, либо взять провод сечением потолще. Главное преимущество схемы – большой КПД, ведь транзисторы в ней почти не нагреваются, но, тем не менее, их стоит установить на небольшой радиатор, для надёжности. При установке обоих транзисторов на общий радиатор обязательно нужно использовать теплопроводящую изолирующую прокладку, т.к. металлическая спинка транзистора соединена с его стоком. Напряжение питания схемы лежит в пределах 12 – 36 вольт, при напряжении в 12 вольт на холостом ходе схема потребляет примерно 300 мА, при горящей дуге ток повышается до 3-4 ампер. Чем больше напряжение питания, тем большее напряжение будет на выходе трансформатора.
Если внимательно присмотреться к трансформатору, то можно увидеть зазор между его корпусом и ферритовым сердечником примерно 2-5 мм. На сам сердечник нужно намотать 10-12 витков провода, желательно медного. Наматывать провод можно в любую сторону. Чем больше сечение провода, тем лучше, однако провод слишком большого сечения может не пройти в зазор. Также можно использовать эмалированную медную проволоку, она пролезет даже в самый узкий зазор. Затем необходимо сделать отвод от середины этой обмотки, оголив проводов в нужном месте, как показано на фото:







Можно намотать в одну сторону две обмотки по 5-6 витков и соединить их, в этом случае также получается отвод от середины.
При включении схемы электрическая дуга будет возникать между высоковольтным выводом трансформатора (толстый красный провод наверху) и его минусом. Минус – это одна из ножек. Определить нужную минусовую ножку можно достаточно просто, если поочерёдно подносить «+» к каждой ножке. Воздух пробивается на расстоянии 1 – 2.5 см, поэтому между нужной ножкой и плюсом сразу возникнет плазменная дуга.
Можно использовать такой высоковольтный трансформатор для создания другого интересного устройства – лестницы Иакова. Достаточно расположить два прямых электрода буквой «V», к одному подключить плюс, к другому минус. Разряд возникнет внизу, начнёт ползти вверх, наверху разорвётся и цикл повторится.
Скачать плату можно тут:

(cкачиваний: 582)

Наткнулся в интернете на очень прикольную штуку - плазменный шар из лампы накаливания. Суть в том, что высокое напряжение от высоковольтного генератора ионизирует газ в колбе обычной стеклянной лампочки (можно даже сгоревшей).

Несмотря на обилие сложных преобразователей, решил придумать схему попроще - для начинающих радиолюбителей. Придумать особо ничего не получилось, но получилось упростить процесс сборки до предела. За основу взял балласт от энергосберегающей лампы. Структурная схема самодельной плазменной лампы:


Лучше всего взять лампу КЛЛ на 40 ватт - она работает достаточно стабильно, включал даже на час, работает без проблем. В качестве повышающего высоковольтного трансформатора применил готовый трансформатор строчной развёртки ТВС 110ПЦ15. Подключал его к выводам номер 10 и 12. Такие строчные трансформаторы можно найти в старых советских телевизорах, хотя можно взять и новый, только они выпускаются со встроенным умножителем.


С трансформатора идут два вывода: один фаза, другой ноль, фаза идет с катушки, а ноль - самая последняя ножка на трансформаторе (она под номером 14).

Фазу мы подключаем к лампе накаливания, а другой провод, выходящий с нулевой ножки, следует заземлить. В общем на следующем фото всё подробно расписано и нарисовано.


Если вам всё равно что-то непонятно - посмотрите это обучающее видео в HD качестве:

Также если вы подключите умножитель напряжения к выходам ТВС, то вы сможете наблюдать свечение люминисцентной лампы, от создаваемого ВВ поля.


Схема собрана на блокинг-генераторе. Транзистор n-p-n можно ставить любой: КТ805, КТ809А. Строчный трансформатор ТВС-110ЛА или ТВС-110Л6. Также стоит умножитель. Можно спаять свой умножитель по схеме а можно поставить готовый умножитель УН9/27 . Напряжение питания 12-30 вольт. Потребление 80 - 300 мА.
Перечень радиодеталь схемы:
27 Ом 2 Вт
220 - 240 Ом 5-7 Вт
VT КТ809А

Трансформатор ТВС-110ЛА или ТВС-110Л6
Первичная обмотка снята полностью с феритого сердечника и намотана другая на картоном каркасе с изолирующей изолентой катушка первая и вторая виток к квитку через слой изоленты.
Обмотка L1 является обмоткой обратной связи и мотается проводом, небольшого диаметра, он может быть любым, к примеру, 0,2-0,3мм. Количество витков обмотки связи может подбираться, но должно быть не более 5 витков, т.к. при большем количестве есть риск спалить транзистор из-за относительно большого индуцируемого напряжения на обмотке связи.
Обмотка L2 является рабочей и выполняется, как правило, толстым проводом (0,5-1,5мм). Количество витков - чем меньше, тем больше выходное напряжение. Но при меньшем количестве витков этой обмотки есть риск спалить транзистор. Оптимальное количество 3-4 витка. Эти обмотки расположены на сердечнике и должны быть надёжно изолированы от него, т.к. при пробое со вторички на сердечник и попадании высокого напряжения высокой частоты на любую из обмоток, можно с 99%-гарантией убить транзистор.



Понравилась статья? Поделитесь ей