Контакты

Регулируемые бп на мс lm317t. Линейный стабилизатор напряжения или тока LM317. схема блока питания мощного регулируемого

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов - LM317 и КТ819Г.

Схема регулируемого блока питания LM317

Список элементов схемы:


Стабилизатор LM317
Т1 - транзистор КТ819Г
Tr1 - трансформатор силовой
F1 - предохранитель 0.5А 250В
Br1 - диодный мост
D1 - диод 1N5400
LED1 - светодиод любого цвета
C1 - конденсатор электролитический 3300 мкф*43В
C2 - конденсатор керамический 0.1 мкф
C3 - конденсатор электролитический 1 мкф*43В
R1 - сопротивление 18K
R2 - сопротивление 220 Ом
R3 - сопротивление 0.1 Ом*2Вт
Р1 - сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора

Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.

Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший - для хорошего охлаждения. Всё-таки 3 ампера - это немало!

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные .
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin - Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора - простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток - низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения - это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения - с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Преимущество импульсного стабилизатора - высокий КПД, низкое тепловыделение.
Недостаток - бОльшее количество элементов, наличие помех.

Герой обзора:

Лот состоит из 10 микросхем в корпусе ТО-220. Стабилизаторы пришли в полиэтиленовом пакете, обмотанным вспененным полиэтиленом.






Сравнение с наверно самым известным линейным стабилизатором 7805 на 5 вольт в таком же корпусе.

Тестирование:
Подобные стабилизаторы выпускаются многими производителями, вот .
Расположение ножек следующее:
1 - регулировка;
2 - выход;
3 - вход.
Собираем простейший стабилизатор напряжения по схеме из руководства:


Вот что удалось получить при 3 положениях переменного резистора:
Результаты, прямо скажем так, не очень. Стабилизатором это назвать язык не поворачивается.
Далее я нагрузил стабилизатор 25 Омным резистором и картина полностью преобразилась:

Далее я решил проверить зависимость выходного напряжения от тока нагрузки, для чего задал входное напряжения 15В, подстроечным резистором выставил выходное напряжение около 5В, и выход нагрузил переменным 100 Омным проволочным резистором. Вот что получилось:
Ток более 0,8А получить не удалось, т.к. начало падать входное напряжение (БП слабый). В результате этого тестирования, стабилизатор с радиатором нагрелся до 65 градусов:

Для проверки работы стабилизатора тока, была собрана следующая схема:


Вместо переменного резистора я использовал постоянный, вот результаты тестирования:
Стабилизация по току тоже хорошая.
Ну и как обзор может быть без сжигания героя? Для этого я собрал снова стабилизатор напряжения, на вход подал 15В, выход настроил на 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе выделялось 8Вт мощности. Радиатор убрал.
Результат продемонстрировал на следующем видео:


Да, защита от перегрева тоже работает, сжечь стабилизатор не удалось.

Итог:

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в за 19 рублей, что существенно дороже обозреваемого.

На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +59 +88

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

В качестве выпрямительных диодов взял старые FR3002 , которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Фото готовой платы.

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО ! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.

Сразу привожу схему:

Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке:
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.

Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут:
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.

В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.

Вот так примерно она будет установлена:

Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.

Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.

А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.

Шаг 5 . Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.

Рано или поздно любой начинающий радиолюбитель сталкивается с необходимостью заиметь простой, надёжный и недорогой регулируемый блок питания для проверки собственных поделок, ну и, конечно же, тестирования новых «пациентов». Вариантов немного – либо купить уже готовый блок с требуемыми характеристиками в магазине или же у более опытного коллеги по ремеслу, либо собрать устройство самостоятельно из подручных материалов. С учётом цен на более-менее качественные ИИП с регулировкой напряжения (в среднем от 15 до 80 у. е.) вывод напрашивается сам собой.

Не хотим покупать, хотим создавать!

Один из самых простых и универсальных вариантов – блок питания на LM 317. Это популярный и недорогой регулируемый линейный стабилизатор напряжения , обычно изготавливаемый в корпусе ТО-220. Узнать, какая ножка за что отвечает, можно из картинки ниже.

Основные характеристики таковы:

  • Входное напряжение до 40 В.
  • Ток на выходе до 2,3 А.
  • Минимальное выходное напряжение – 1,3 В.
  • Максимальное выходное напряжение – Uвх-2 В.
  • Рабочая температура – до 125 градусов Цельсия.
  • Погрешность стабилизации – не более 0,1% от Uвых.

Чуть подробнее остановимся на максимальном токе. Дело в том, что LM 317 – линейный стабилизатор. «Лишнее» напряжение на ней превращается в тепло, а максимальный теплопакет микросхемы с дополнительным радиатором охлаждения составляет 20 Вт, без него – около 2,5 Вт. Зная формулу расчёта мощности, мы можем посчитать, какой ток реально получить при различных условиях. Например, Uвх=20 В, Uвых=5 В – падение напряжения Uпад = 15В.

При теплопакете 20 Вт это означает максимально допустимый ток в 1,33 А (20 Вт/15 В=1,33 А). А без радиатора – всего 0,15А. Так что помимо радиодеталей следует озаботиться поиском радиатора – подойдёт какой-нибудь помассивнее, от старого усилителя мощности, да и к выбору источника питания нужно подойти с умом.

Комплектующие и схема

Деталей нужно совсем немного:

  • 2 резистора: постоянный, номиналом 200 Ом 2 Вт (лучше мощнее) и переменный настроечный 6,8 кОм 0,5 Вт;
  • 2 конденсатора, напряжение в соответствии с требованиями, ёмкость – 1000…2200 мкФ и 100…470 мкФ;
  • диодный мост или диоды, рассчитанные на напряжение от 100В и ток не менее 3..5 А;
  • вольтметр и амперметр (диапазон измерений, соответственно, 0…30 В и 0…2 А) – сойдут аналоговые и цифровые, на ваш вкус.
  • трансформатор с подходящими характеристиками – на выходе не более 25…26 В и ток не менее 1 А – по мощности лучше подобрать с хорошим запасом , чтобы не возникла перегрузка.
  • радиатор с винтовым креплением и термопаста.
  • корпус будущего блока питания, в который влезут все детали, и, что важно, с хорошей вентиляцией.
  • опционально: винтовые зажимы, ручки регулировки, «крокодилы» для выводов, ну и прочая мелочёвка – тумблеры, индикаторы работы, предохранители, которые уберегут блок питания от серьёзных поломок и сделают работу с ним более удобной.

На всякий случай отдельно разъясним, почему напряжение трансформатора не более 25 В. При выпрямлении с использованием фильтрующего конденсатора напряжение на выходе повышается на корень из двух, то есть примерно в 1,44 раза. Таким образом, имея на выходе обмоток 25 В переменного тока, после диодного моста и сглаживающего конденсатора напряжение составит около 35–36 В постоянного тока, что довольно близко к пределу микросхемы. Помните об этом, когда будете выбирать конденсаторы и трансформатор!

Как видите, работы очень мало – распайка деталей может выполняться даже навесным монтажом, без ущерба качеству, при условии аккуратного изолирования всех контактов и живучести блока питания.

После сборки не торопитесь подключать к блоку нагрузку – сначала проверьте напряжение питания на выходе диодного моста , а потом запустите блок на холостом ходу и пальцем проверьте температуру стабилизатора – он должен быть прохладным. После подключите питание от блока к какой-нибудь нагрузке и проверьте показания напряжения на выходе – они не должны меняться.

Немного нюансов

LM 317 имеет множество аналогов как хороших, так и не очень – будьте бдительны, выбирая товар на рынке! Если важна точность регулировки, можно изменить номинал настроечного резистора до 2,4 кОм – диапазон выходных напряжений, конечно, уменьшится, зато случайное касание ручки почти не изменит напряжение на выходе – а иногда это очень важно! Поэкспериментируйте с разными номиналами, чтобы сделать свой блок питания удобным.

Ещё нужно соблюдать температурный режим – оптимальная температура работы LM 317 составляет 50…70 градусов Цельсия, и чем сильнее греется микросхема, тем хуже точность стабилизации напряжения.

Если предполагаются постоянные большие нагрузки, скажем запитывание усилителей мощности или электродвигателей – желательно не только закрепить микросхему на радиаторе, но и увеличить ёмкость сглаживающего конденсатора до 4700 мкФ и выше. При правильно подобранной ёмкости под нагрузкой напряжение не будет проседать.

Когда вы решите обзавестись собственными универсальным источником питания, подумайте, что для вас будет лучше – отдать приличную сумму за готовое решение или же собрать устройство своими руками, используя недорогие комплектующие и потешив собственное самолюбие пусть небольшим, но, все же, достижением.

Стоимость регулируемого блока питания, сделанного своими руками, невелика – от себестоимости самой микросхемы (около 20 рублей) до 700–800 рублей при покупке новых деталей в магазине.



Понравилась статья? Поделитесь ей