Контакты

Проектор из чего состоит. Устройство проекторов: принцип работы, описание и характеристики. Оптическая схема одноматричного DLP-проектора

Проекционный аппарат/ проектор (от латинского projicio — бросаю вперед) — оптекомеханический прибор для проецирования на экран увеличенных изображений различных объектов.

Первый проектор изобрел немецкий физик и математик Афанасий Кирхер в 1640г., назвав свой аппарат «волшебный фонарь». Аппарат, в котором источником света служила свеча, позволял создавать на экране теневые проекции изображения людей, животных или предметов, вырезанных из картона.

Современные проекционные аппараты проецируют на экран изображения с экрана монитора и подключаются к ПК. В компьютерных проекторах в качестве источника проецируемого изображения используется специальный электронно-управляемый модулятор, на который подается сигнал от видеоадаптера ПК. Модулятор используется в качестве управляемого светофильтра, модулирующего световой поток от проекционной лампы.

Конструкции и принципы действия модуляторов отличаются большим разнообразием, хотя в основном они построены на базе ЖК-панелей.

В мультимедийном проекторе проекционная лампа, ЖК- матрица и оптическая система конструктивно размещаются в одном корпусе, что делает их похожими на диапроекторы, предназна­ченные для просмотра слайдов или диафильмов.

По принципу действия мультимедийный проектор не отличается от оверхед-проектора: изображение создается с помощью мощной проекци­онной лампы и встроенного в проектор электронно-оптического модулятора, управляемого сигналом видеоадаптера ПК, а затем посредством оптической системы проецируется на внешний эк­ран. Основным отличием в мультимедийных проекторах является конструкция модулятора и способы построения и переноса изоб­ражения на экран.

В зависимости от конструкции модулятора про­екторы бывают следующих типов:

  • TFT-проекторы;
  • полисилико­новые проекторы
  • DMD/DLP-проекторы.

В зависимости от способа освещения модулятора мультимедий­ные проекторы подразделяют на проекторы просветного и отражательного типов .

TFT-проекторы

В TFT -проекторах , относящихся к проекторам просветного типа, в качестве модулятора используется малогабаритная цветная ак­тивная ЖК – матрица, выполненная по технологии TFT. Принцип действия мультимедийного TFT-проектора просветного типа ил­люстрирует рис. 1.

Основным элементом установки является миниатюрная ЖК- матрица , выполненная по технологии TFT, как и ЖК-экран плос­копанельного цветного монитора . Равномерное освещение поверх­ности ЖК-матрицы достигается за счет применения системы линз, называемой конденсором.

Полисилико­новые проекторы

Полисиликоновые мультимедийные проекторы также относятся к проекторам просветного типа и применяются в том случае, когда необходимо получить более яркое изображение. В них используется не одна цветная TFT-матрица, а три монохромных миниатюр­ных ЖК-матрицы размером около 1,3″ . Каждая из матриц форми­рует монохромное изображение красного, зеленого или синего цвета. Оптическая система проектора, как показано на рис. 2, обеспечивает совмещение трех монохромных изображений, в результате чего формируется цветное изображение. Такая техноло­гия получила название полисиликоновой (p Si ) . Каждый элемент полисиликоновой матрицы содержит только один тон­копленочный транзистор, поэтому его размер меньше, чем раз­мер элемента TFT-матрицы, что позволяет повысить четкость изображения .

Цветоделителъная система полисиликонового проектора , со­стоящая из двух дихроичных (D 1 D 2 ) и одного обычного (N 1) зеркал (рис.2), используется для разложения белого света проекционной лампы на три составляющие основных цветов (красный, зеленый, синий).

Цветоделение необходимо выполнить для того, чтобы подать на каждую из трех монохромных матриц световой поток соот­ветствующего цвета. Дихроичное (цветоделительное) зеркало пропус­кает свет только одной длины волны (один цвет) и представляет собой хорошо отполированную стеклянную подложку с нанесен­ной на него тонкой пленкой из диэлектрического материала.

Система цветосмешения полисиликонового проектора состоит из двух дихроичных (D 3 D 4 ) и одного отражающего (N 2 ) зеркал и служит для получения цветного изображения путем наложения одного на другой трех монохромных изображений, создаваемых соответствующими ЖК -матрицами.

Полисиликоновые проекторы обеспечивают более высокое качество изображения, яркость и насыщенность цветов по сравнению с проекторами на основе TFT-матриц . Они более надежны в работе и долговечны , поскольку три ЖК-матрицы работают в менее напряженном тепловом режиме, чем одна. Благодаря этому поли­силиконовые проекторы можно использовать при проецировании изображения на большой экран в таких помещениях, как конфе­ренц-залы, кинотеатры.

DMD/DLP-проекторы

ЖК-проекторы отражательного типа предназначены для рабо­ты в больших аудиториях и отличаются по принципу действия: модуляции подвергается не проходящий, а отраженный световой поток.

В настоящее время наиболее используемой в конструкциях ЖК-проекторов отражательного типа является технология DMD/DLP , разработанная фирмой Texas Instruments .

В DMD / DLP -проекторах отражательного типа излучение ис­точника света модулируется изображением при отражении от мат­рицы.

В DMD/DLP-проекторах в качестве отражающей поверхно­сти используется матрица, состоящая из множества электронно — управляемых микрозеркал, размер каждого из которых около 1 мкм . Каждое микрозеркало имеет возможность отражать падаюший й него свет либо в объектив, либо в поглотитель, что определяется уровнем поданного на него электрического сигнала. При попадании света в объектив образуется яркий пиксел экрана, а в поглотитель — темный. Такие матрицы обозначаются аббревиатурой DMD(Digital Micromirror Device- цифровой микрозеркальный прибор) , а технология, на которой основан их принцип действия, - DLP (Digital Light Processing - цифровая обработка света).

Как правило, в одной DMD-матрице содержится около 848 х 600 = 508 800 микрозеркал, что превосходит SVGA-разрешение (800×600 = 480 000 пикселов).

Для получения цветного изображения используются проекто­ры двух вариантов: с тремя или одной DMD-матрицей.

Трехматричный проектор , схема которого дана на рис. 3, по способу формирования цветного изображения аналогичен полисиликоно­вому (см. рис. 2).

В одноматричных DMD/DLP-проекторах полный цветной кадр формируется в результате последовательного наложения трех бы­стро меняющихся монохромных кадров: черно-красного, черно-зеленого и черно-синего. Смена монохромных кадров на экране незаметна благодаря инерционности человеческого зрения. Мо­нохромные кадры образуются при последовательном освещении DMD-матрицы лучом красного, зеленого и синего цветов. Луч каждого цвета образуется за счет пропускания светового потока г проекционной лампы через вращающийся диск с красным, зеленым и синим светофильтрами, как это показано на схеме одноматричного проектора (рис. 4). Управление микрозеркалами синхронизировано с поворотом светофильтра.

Схема одноматричного отражательного мультимедийного проектора

По сравнению с ЖК-технологиями технология DLP обладает следующими преимуществами:

  • практически полным отсутствием зернистости изображения,
  • высокой яркостью и равномерностью ее распределения.

К недостаткам одноматричных DMD-проекторов следует отнести заметное мелькание кадров.

В эпоху технологий высокой четкости проекторы набирают все большую популярность, ведь они позволяют воссоздать атмосферу настоящего кинотеатра в домашних условиях. Безусловно, данную идею можно реализовать также с помощью ЖК-телевизора с большой диагональю экрана и поддержкой стандарта видео 4K.

Однако контент с таким разрешением пока еще редкость, да и телевизоры этого класса стоят недешево. Современные же проекторы Full HD способны обеспечить превосходное качество изображения, кроме того, они занимают существенно меньше места.

LCD против DLP

В современных проекторах используются технологии LCD (Liquid Crystal Display) и DLP (Digital Light Processing), различающиеся по принципу формирования изображения. В случае с DLP роль пикселя выполняет миниатюрное зеркальце. Перед набором таких «пикселей» установлен вращающийся светофильтр, разделенный на цветные сегменты.

Свет передается через светофильтр, попадает на зеркала и отражается от них на экран. Технология LCD использует матрицы, которые освещаются отраженным с системы зеркал светом. Каждое зеркало является светофильтром и подает на матрицу только один из трех основных цветов.

Безусловно, обе эти технологии обладают как достоинствами, так и недостатками: например, LCD-проекторы обеспечивают насыщенные цвета, а DLP-решения имеют более высокую контрастность. Из минусов LCD-моделей стоит отметить меньшую глубину черного цвета, а у DLP-проекторов - наличие «эффекта радуги». Однако в современных устройствах эти недочеты практически незаметны.

По результатам наших различных сравнительных тестов LCD-проекторы пусть и не намного, но все же опережают по качеству картинки DLP-решения. Как известно, проекционную технологию LCD разработала японская компания Epson, а первое устройство на основе такого принципа был создано еще 25 лет назад. Все эти годы технология существенно улучшалась и дорабатывалась.


3D-проектор от Epson стоимостью 75 000 рублей поддерживает разрешение Full HD, позволяет подключать смартфоны и планшеты по разъему HDMI MHL и способен отображать картинку с диагональю до 300″

Магия большого экрана. Приглушенный свет, широкий угол обзора, эффект полного погружения в происходящее действо. Нет, полностью заменить кино телевидением вряд ли получится и едва ли это целесообразно - разные у них задачи. "Никогда ТВ не заменит газет - попробуйте вздремнуть, прикрыв лицо телевизором". Но противопоставлять одно другому и не стоит: видеопроекторы - вот выход для решивших устроить "свое кино". И сделать это совсем не сложно - сегодня на рынке огромное множество видеопроекторов. Разброс цен от сотен долларов до сотен тысяч за аппарат дает понять, что видеопроекторы, мягко говоря, бывают разные. Различны технологии, а значит - характеристики и сферы применения.

Рассмотрим основные технологии, используемые на рынке современных проекторов, чуть более подробно, чем это позволяет сделать пара-тройка строчек пресс-релизов.

CRT (Cathode Ray Tube или ЭЛТ - проекторы на основе электронно-лучевых трубок)

Это самая первая технология проецирования видеоизображения на внешний экран. Зародилась она еще в 50-е годы прошлого века. Решение вполне логичное для того времени: раз лучевые трубки так успешно используются в телевизорах, стоит попытаться сделать проектор на основе таких же трубок.

Общий принцип заключается в следующем: три специальные электронно-лучевые трубки повышенной яркости формируют общее изображение. Каждая трубка, обычно "черно-белая", диагональю дюймов в девять, передает один из базовых цветов (красный, зеленый и синий - окрашиваемых светофильтрами) и через свой объектив проецирует на внешний экран. Путем очень точной настройки три изображения совмещаются на проекционном экране в единое целое. Этакий гипертрофированный цветной телевизор, где в качестве электронных пушек используются электронно-лучевые трубки с объективами, а роль цветного люминофора выполняют светофильтры.

Смотреть проецируемое CRT-проектором изображение желательно в полностью затемненном помещении - яркость у них не самая высокая. Проекторы тяжелы в установке: как физически не самые легкие, так и ввиду необходимости прецизионной юстировки – приходится раздельно настраивать резкость и геометрию по всем трем цветовым каналам.

Широко распространено мнение, что эти проекторы дают самое качественное видеоизображение. Дело тут, скорее всего, вот в чем: проекторы на ЭЛТ не имеют цифровых артефактов интерполяции - принцип формирования кадра у них самый что ни на есть аналоговый. Строчная и кадровая развертки формируют кадр строго в соответствии с форматом - будь то 720х576 для PAL или 640х480 для NTSC. Даже более того, если количество строк определяется форматом и жестко фиксировано, то о количестве точек в строке в аналоговой системе говорить даже как-то странно. Более корректно - горизонтальная четкость, которая зависит от верхней граничной частоты пропускания видеоусилителя. Аналоговое вещательное качество (студийное) - это 800-900 вертикальных линий. Для примера: бытовые видеомагнитофоны формата VHS - 240 линий, S-VHS и Video Hi8 - 400 линий, цифровой формат DV - 500 линий (на компонентных выходах).

LCD (Liquid Crystal Display или ЖКИ - проекторы на основе жидкокристаллических индикаторов)

Если в мониторах на смену ЭЛТ пришли ЖК, то стоило этого ожидать и в технологиях видеопроекторов.. Остановимся подробнее только на отличиях.

Цветное изображение формируется небольшой ЖК матрицей (диагональю в дюйм-два) и мощной лампой подсветки проецируется через объектив на экран. Матрица работает на просвет, в отличие от D-ILA технологии, о которой чуть позже.

Похоже, это самая доступная на сегодня технология - проекторы стартуют долларов от 800 за бюджетные модели. Хорошо отработанные схемные решения, отсутствие механически подвижных частей (кроме, возможно, моторизированных приводов объективов), надежность цифровых технологий - вот основные причины популярности проекторов на базе LCD. В такой "бочке меда", конечно, не обойтись без проблем. Главная - видимая пикселизация изображения, вызванная технологическими причинами. Незаметные на глаз границы между пикселями (субпикселями) на ЖК мониторах при значительных увеличениях становятся различимыми на больших экранах. Проблему стараются решать с разной степенью успешности. Кто-то уменьшает до предела границы между отдельными ячейками ЖК матрицы, кто-то предлагает три матрицы - по одной для каждого базового цвета - с небольшим смещением, чтобы перекрыть черную сеточку, проецируемую на экран. Второе, что приходится решать производителям - это повышение контраста. Просветить насквозь LCD-матрицу из пары пластин, слоя жидких кристаллов, поляризатора и светофильтров - значит снизить яркость белого. Просто повысить яркость лампы подсветки - потерять глубину черного. Впрочем, в лучших образцах LCD-проекторов производители решают эти проблемы, что не может не приводить к их значительному удорожанию.

DLP (Digital Light Processing - цифровая обработка света)

В двух словах - это как пускать зеркальцем солнечные зайчики. Основой проектора является специальный DMD-чип (Digital Micromirror Device - цифровое микрозеркальное устройство). Поверхность чипа состоит из большого множества крошечных зеркал, которые могут отклоняться при подаче на них напряжения. Отраженный от такого зеркальца луч не попадает в объектив (а значит и на экран) - так формируется черная точка. Если же зеркальце не отклонено от плоскости чипа, точка на экране будет белой. Промежуточные значения яркости формируются, когда зеркальце направляет отраженный луч в объектив. Каждое зеркальце отвечает за свою точку создаваемой на экране картинки.

Придать изображению цвет в такой системе можно двумя способами. Первый - "одночиповый". Как видно из названия - в системе используется один DMD-чип (устройство, стоит заметить, недешевое). На нем последовательно образуется светотеневая картинка для каждого базового цвета (красного, зеленого, синего). Окрашивание происходит с помощью вращающегося диска-светофильтра с секторами соответствующих цветов. Второй способ - "трехчиповый". Тут дорогостоящих чипов не пожалели - для каждого из базовых цветов используется свой чип и картинка формируется сразу.

Просвечивать насквозь тут ничего не нужно, поэтому яркость изображения у таких проекторов очень высокая. Черное - полное отсутствие света, так как "зайчик" от повернувшегося зеркальца совсем не попадает в объектив, а значит значение контраста также максимально возможное. Зазоры между зеркальцами тут тоже минимальны, а потому нет присущей LCD-проекторам "сеточки" на большом экране. В первых моделях был сильно заметен "эффект радуги" - цветные ореолы вокруг контрастных или быстро движущихся объектов. Вызвано это тем, что изображение формируется последовательно тремя базовыми цветами и при движении контрастных объектов на экране получалось что-то вроде цветных бегущих огней. Борются с этим явлением по-разному: от повышения частоты последовательного проецирования картинок базовых цветов, для чего диск светофильтров содержит до семи секторов (по два на базовые красный-синий-зеленый плюс изумрудный), до использования трех чипов для одновременного проецирования.

D-ILA (Direct Drive Image Light Amplifier - усилитель света изображения с прямым управлением)

Это технология, которая совмещает в себе преимущества LCD и DLP. Возникла на пересечении их подходов в формировании изображения - надежности жидких кристаллов с эффективностью отражения света.

Световой поток модулируется в ЖК матрице, как и в LCD-проекторах, но свет не проходит матрицу насквозь, а отражается от электродов пикселей как от микрозеркалец в DLP. Свет проходит только через стекло, прозрачные электроды и слой жидких кристаллов. Вся же электронная разводка (переключатели и компоненты, обеспечивающие адресацию к ячейкам матрицы) остается под слоем отражающих электродов и не препятствует прохождению света как в "чистом" LCD-проекторе. Отражает практически вся поверхность матрицы, за исключением изоляции между электродами.

Главным преимуществом D-ILA технологии над LCD и DLP является высокое отношение апертуры. Если для LCD технологии площадь, пропускающая свет сквозь себя, составляет до 60% от общей площади пикселя, для DLP площадь отражения микрозеркальцем - около 80%, то для технологии D-ILA эта площадь может достигать 95%. Это делает пикселизацию изображения практически незаметной. Кроме того, уменьшаются потери фототеплового преобразования, так как почти весь световой поток отражается, что позволяет увеличить мощность лампы подсветки. Другой стороной медали (высокого отношения апертуры) является то, что матрицу HD разрешения можно сделать не крупнее чем диагональю в один дюйм, а значит получить довольно компактный проектор.

LDT (Laser Display Technology - технология лазерного дисплея)

Новейшая технология проецирования видео на большой экран. Первые серийные образцы появились только в 2000 году, несмотря на то, что сами лазеры появились относительно давно. Мешало то низкое КПД и высокое энергопотребление газоразрядных лазеров, то слишком малая мощность и "недостаток цветности" лазеров полупроводниковых. Но вот технологические ограничения были преодолены, и на рынок выходят проекционные телевизоры и видеопроекторы на полупроводниковых лазерах.

Три лазера излучают свет в красном, зеленом и синем спектре видимого диапазона. Яркость излучения каждого лазера изменяется электрооптическими модуляторами в соответствии с видеосигналом на входе. Три модулированных цветных луча собираются зеркалами и призмами в единый пучок, который подается на вращающиеся зеркала строчной развертки и качающееся зеркало кадровой - подобно растру ЭЛТ.

Основным отличием LDT проектора является то, что ему не нужен объектив. Лазер дает параллельный пучок света, с одинаково резким пятном на большом диапазоне расстояний. Это как избавляет вас от необходимости наводить на резкость при установке проектора на разных расстояниях от экрана, так и дает совершенно новое качество: возможность проецирования на самые различные, в том числе и неровные, поверхности. Даже если проецировать изображение на цилиндрические поверхности или на плоские, но под большим углом - изображение будет резким по всей площади. Чистота и постоянство базовых цветов, определяемых характеристиками используемых лазеров, дают яркую, сочную и контрастную картинку, недоступную при использовании прочих технологий.

Это устройство, подключаемое к компьютеру или ноутбуку, планшету,видеокамере и т.д. для получения изображения на проекционном экране.
Для работы проектора не требуется каких-либо специальных программ. Работа с проектором подобна работе с компьютерным или видео монитором. На пульте дистанционного управления проектором имеются регулировки яркости и контрастности изображения.

Проекторы для офисных презентаций не нуждаются в сложной и частой регулировке. Такие проекторы можно включать и работать с ними, не читая инструкции. Внутри корпуса проектора находится источник света лампа или лазерный светодиод и преобразователь входного сигнала в изображение. Как правило, проектор имеет вход для подключения сигнала от компьютера и один или два входа для коммутации сигналов видео. В проекторах имеются также аудио входы для воспроизведения звука на встроенные динамики. Проекторы мультисистемны и работают со всеми стандартами видео (PAL / SECAM / NTSC). Это значит, что вы можете воспроизводить любую телевизионную программу и записи с видеокассет и лазерных дисков.

Яркость и графическое разрешение изображения- это самые важные свойства проекторов для презентаций. Говоря о яркости проекторов, мы будем подразумевать световой поток проектора, то есть количество света, излучаемое проектором. Световой поток не зависит ни от размера экрана, ни от расстояния от объектива проектора до плоскости экрана и измеряется в ANSI люменах. Световой поток современных офисных проекторов превышает 1000 ANSI-люменов, что позволяет проводить презентации при обычном искусственном свете.

Для воспроизведения видео рекомендуется использовать проекторы с графическим разрешением не менее 800х600 точек SVGA . Для качественного воспроизведения компьютерного изображения с мелкими деталями выбирайте проектор с графическим разрешением не менее 1024х768 точек XGA . Для компьютерных приложений с повышенными требованиями по контрастности и графическому разрешению изображения применяйте проекторы с графическим разрешением 1400х1050 точек SXGA + .

Оптическая схема проекторов со стандартными объективами устроена так, что нижний край изображения оказывается на уровне объектива проектора. В большинстве моделей проекторов предусмотрена возможность коррекции вертикальных трапециевидных искажений, возникающих при расположении проектора значительно выше или ниже нормального рабочего положения. Проекторы формируют изображение заданного размера. При использовании стандартных объективов с коэффициентом 2:1 расстояние от объектива проектора до плоскости экрана совпадает с удвоенной шириной экрана. Длина штатного компьютерного кабеля обычно не превышает 3 м, чего вполне достаточно работы в офисе. При необходимости допускается использование компьютерных кабелей длиной до 15 м. Длина штатного видео кабеля также не велика, однако при необходимости для передачи сигнала видео можно использовать профессиональные видео кабели длиной до 100 м.

В качестве источника света в проекторах используются надежные металлогалоидные или металлогалогеновые лампы со сроком службы не менее 2000 часов. Все эти лампы по сути являются ртутными лампами в которые добавлены соли йода и брома. Эти лампы очень мощные и поставляются в специальном ламповом модуле, который включает лампу, отражатель и собственно сам модуль с контактами и направляющими для установки в определенный проектор. При выходе из строя лампы проектора меняется весь ламповый модуль в сборе. Срок службы лампы значительно сокращается при нарушении условий охлаждения и вентиляции, поэтому правильно выключайте проектор и следите за чистотой воздушных фильтров.

При использовании проектора в режиме офисной эксплуатации по 2 часа в сутки ежедневно, включая выходные и праздничные дни, одной лампы хватит на срок не менее, чем на два с половиной года.

Мультимедийные проекторы: базовые технологии

Среди разработанных на сегодняшний день технологий выдачи изображения на проекционный экран можно выделить четыре основные, получившие наиболее широкое применение в коммерческих продуктах ведущих производителей и различающиеся в первую очередь типом элемента, используемого для формирования изображения:

В каждом случае свойства формирователя определяют основные достоинства и недостатки технологии, а, следовательно, и область применения созданных на ее основе проекционных аппаратов.

CRT-технология.

Мультимедийные проекторы на базе электронно-лучевых трубок (CRT) выпускаются в течение уже нескольких десятилетий. Но, несмотря на появление более современных технологий, по качеству воспроизведения изображения (разрешение, четкость, точность цветопередачи), уровню акустического шума (менее 20 дБ) и длительности непрерывной работы (10 000 часов и более) они до сих пор не имеют себе равных. Ни одна другая технология пока не обеспечивает столь же глубокий уровень черного и столь же широкий динамический диапазон яркости изображения, благодаря которым CRT-проекторы позволяют различать детали даже при демонстрации затемненных сцен. Физические характеристики флюоресцирующего покрытия экрана трубки (см. Устройство CRT-проектора) исключают потерю информации при воспроизведении видеосигналов разных стандартов (NTSC, PAL, HDTV, SVGA, XGA и т. д.), а сходство технологии производства используемых в проекторах трубок с телевизионными обеспечивает точность передачи цветов без применения алгоритмов гамма-коррекции.

Обладая несомненными достоинствами, особенно при демонстрации видео, CRT-проекторы имеют и ряд существенных недостатков, ограничивающих сферу их применения. При значительных габаритах и массе в несколько десятков килограмм они проигрывают современным портативным мультимедиа-проекторам в яркости. При характерном для них световом потоке в пределах от 100 до 300 ANSI-лм просмотр программ возможен лишь в отсутствие внешнего освещения. Для достижения наилучшего качества изображения при инсталляции CRT-проектора нужно выполнить множество тонких настроек (сведение лучей, баланс белого и т. д.), что требует привлечения квалифицированного персонала. Между тем, после перемещения аппарата на новое место, замены вышедшего из строя компонента или естественного ухода параметров с течением времени все процедуры необходимо повторить заново. Таким образом, к достаточно высокой цене самого устройства могут добавиться значительные эксплуатационные расходы.

Устройство CRT проектора

Наиболее совершенные CRT-проекторы строятся на трех электронно-лучевых трубках с размером экрана от 7 до 9 дюймов по диагонали. Каждая трубка воспроизводит один из базовых цветов пространства RGB - красный, зеленый или синий.

Выделенные из входного сигнала цветовые составляющие управляют работой модуляторов соответствующих трубок, меняя интенсивность электронного луча, который под воздействием магнитного поля отклоняющей системы сканирует внутреннюю поверхность экрана трубки с фосфорным покрытием. Таким образом на экране трубки формируется изображение одного цвета. С помощью линзы оно проецируется на внешний экран, где смешивается с проекциями от двух других трубок для получения полноцветной картинки.

Преимущества CRT:

  • Высокое качество изображения
  • Большая длительность непрерывной работы
  • Глубокий уровень черного (контрастность)
  • Практически неограниченное разрешение
  • Низкий уровень шума, достаточность пассивного охлаждения
  • Испытанная временем технология (более полувека)
Недостатки CRT:
  • Низкий уровень яркости
  • Необходима периодическая калибровка
  • Нечеткая геометрия
  • Не рекомендуется для статических изображений

LCD-технология

В мультимедийных проекторах, выполненных по технологии LCD (Liquid Crystal Display), функции формирователя изображения выполняет LCD-матрица просветного типа. По принципу действия такие аппараты напоминают обычные диапроекторы (см. Устройство LCD-проектора) с той разницей, что проецируемое на внешний экран изображение формируется при прохождении излучаемого лампой светового потока не через слайд, а через жидкокристаллическую панель, состоящую из множества электрически управляемых элементов - пикселов. В зависимости от величины приложенного к каждому такому элементу переменного напряжения меняется его прозрачность, а, следовательно, и уровень освещенности участка экрана, на который проецируется данный пиксел.

LCD-технология позволила существенно удешевить проекционные аппараты, уменьшить их габариты и одновременно увеличить излучаемый ими световой поток (в наиболее мощных моделях он достигает и 10000 ANSI-лм). Она естественным образом адаптирована к воспроизведению видеосигналов от компьютерных источников, а также сохраненных в цифровом формате видеофайлов. LCD-проекторы просты в обращении и настройке и сохраняют свои параметры после транспортировки. Именно поэтому они широко применяются в бизнес-сфере для проведения презентаций и демонстрации шоу-программ.


Вместе с тем, из-за ограниченности собственного оптического разрешения, определяемого числом пикселов в жидкокристаллической матрице формирователя изображения, LCD-проекторы воспроизводят без искажения сигналы только одного, как правило, компьютерного стандарта SVGA, XGA и т. д. Для воспроизведения сигналов иных стандартов, в том числе телевизионных, применяются специальные алгоритмы преобразования графической информации к естественному для данного проектора цифровому формату. Наличие непрозрачных промежутков между отдельными пикселами в жидкокристаллических матрицах приводит к появлению на экране сетки, различимой с близкого расстояния. С переходом на полисиликоновые матрицы с более плотной структурой пикселов и разрешением XGA и выше этот недостаток становится практически незаметным, а постоянное совершенствование алгоритмов формирования цветного изображения значительно улучшает его качество по сравнению с моделями более ранней разработки.

Устройство LCD проектора

Принцип работы жидкокристаллических матриц, используемых в LCD-проекторах в качестве формирователей изображения, основывается на свойстве молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля и оказывать поляризующий эффект на световые лучи. В многослойной структуре матрицы, представляющей собой прямоугольный массив множества отдельно управляемых элементов (пикселов), слой жидких кристаллов помещается между стеклянными пластинами, на поверхности которых нанесены бороздки. Благодаря им, во всех элементах матрицы удается сориентировать молекулы идентичным образом, причем, вследствие взаимно перпендикулярного расположения бороздок двух пластин, ориентация молекул меняется по мере удаления от одной из них и приближения к другой на 90 градусов.


Пропущенный через такой слой жидкокристаллического вещества поляризованный свет (см. рис.) также меняет плоскость поляризации на 90 градусов. Поэтому структура, в которую добавлены входной и выходной поляризационные фильтры с взаимно перпендикулярными осями поляризации (a и b), оказывается прозрачной для внешнего светового потока, частично ослабевающего при прохождении входного поляризатора.

Находясь под воздействием электрического поля, молекулы жидкокристаллического слоя меняют свою ориентацию, и угол поворота плоскости поляризации светового потока заметно уменьшается. В этом случае большая часть светового потока поглощается выходным поляризатором. Таким образом, управляя уровнем электрического поля, можно менять прозрачность элементов матрицы.

В LCD-панелях с активной адресацией пикселов, выполненных с применением подложек из аморфного кремния, каждый элемент работает под управлением отдельного тонкопленочного транзистора (TFT - Thin Film Transistor).

Сам транзистор и соединительные проводники, занимая значительную часть поверхности матрицы, снижают ее световую эффективность, препятствуя увеличению разрешения, определяемого числом пикселей.


Переход на полисиликоновую технологию (p-Si), широко применяемую в современных LCD-проекторах, позволил перенести элементы схемы управления в слой поликристаллического кремния и заметно уменьшить размеры проводников и управляющих транзисторов. Тем самым, удалось повысить световую эффективность матриц и обеспечить условия для увеличения их разрешения. Дополнительный выигрыш по световому потоку в некоторых LCD-матрицах обеспечивает микролинзовый растр - каждый элемент матрицы снабжается собственной микролинзой, направляющей световой поток через прозрачную область. Подобные матрицы сегодня применяются во многих LCD-проекторах.



Современные LCD-проекторы выполняются на базе трех полисиликоновых жидкокристаллических матриц, размером, в основном, от 0.7 до 1.8 дюймов по диагонали. Структурная схема такого проектора представлена на рисунке.

Световое излучение лампы с помощью конденсора преобразуется в равномерный световой поток, из которого дихроичные зеркала-фильтры выделяют три цветовые составляющие (красную, синюю и зеленую) и направляют их на соответствующие LCD-матрицы. Сформированные ими цветные изображения объединяются в цветосмесительном призматическом блоке в одно полноцветное, которое затем через объектив проецируется на внешний экран.


Обьектив с блоком ЖК матриц. К каждой матрице идет контактный шлейф.

D-ILA-технология

Относительно недавно разработанная компанией Huges-JVC технология D-ILA(Direct Drive Image Light Amplifier) фактически является первым коммерческим воплощением так называемой технологии LCOS, представляющей, по мнению большинства экспертов, одно из наиболее перспективных направлений в области создания проекционного оборудования. Подобно LCD-технологии она базируется на свойствах жидких кристаллов, однако, вместо обычных просветных матриц на основе аморфного или поликристаллического кремния, предполагает использование в качестве формирователей изображения приборов отражающего типа (см. Устройство D-ILA-проекторов). В матрице D-ILA светомодулирующий жидкокристаллический слой располагается поверх подложки из монокристаллического кремния, на которой фотолитографическим способом сформированы управляющие пикселами электроды, одновременно выполняющие функции отражающих элементов. Почти вся схема управления матрицей размещается непосредственно в подложке, что обеспечивает данной технологии ряд существенных преимуществ по сравнению с LCD-панелями. Матрицы D-ILA проще в изготовлении и при меньших размерах могут иметь существенно более высокое разрешение. Эффективность использования площади кристалла в них достигает 93%, что практически исключает проявление сеточной структуры на экране.

Большинство выпущенных к настоящему времени D-ILA-проекторов базируются на матрицах с разрешением SXGA (1365х1024 пикселей) и, обладая световым потоком в пределах от 1000 до 7000 ANSI Люмен, характеризуются сравнительно большой массой и высокой ценой. Кроме того, существуют и матрицы повышенного разрешения QXGA (2048х1536 пикселов) размером 1.3 дюйма по диагонали. Последние обеспечивают полноценное (без использования алгоритмов сжатия) воспроизведение видеосигналов стандарта HDTV (1080i).

Устройство D-ILA проекторов

В D-ILA проекторах функции формирователей изображения выполняют жидкокристаллические матрицы отражающего типа, характеризующиеся высоким разрешением и световой отдачей.

Структура матрицы D-ILA

Матрица D-ILA представляет собой многослойную структуру, размещенную на подложке из монокристаллического кремния. Все компоненты схемы управления выполнены по комплиментарной технологии CMOS и располагаются за светомодулирующим слоем жидких кристаллов. Это позволяет существенно увеличить плотность размещения пикселов, размеры которых могут составлять всего несколько микрон, и обеспечить высокую эффективность использования площади кристалла (достигнутый уровень - 93%).

Преимуществом технологии является также возможность формирования светомодулирующего слоя и схемы управления в ходе единого технологического процесса. Отражающие свойства матрицы определяются состоянием слоя жидких кристаллов, меняющегося под воздействием переменного электрического напряжения, которое формируется между отражающими пиксельными электродами и общим для всех пикселей прозрачным электродом.
D-ILA матрицы выдерживают существенное повышение температуры, что позволяет применять в проекторах, выполненных на их основе, мощные источники света.


Проекторы D-ILA строятся по трехматричной схеме (каждая матрица формирует изображение одного из базовых цветов RGB-пространства) и демонстрируют великолепное изображение, на котором практически незаметна пиксельная структура. Они с равным успехом могут быть применены для воспроизведения компьютерных и видеосигналов, однако в силу новизны технологии спектр выпускаемых на сегодняшний день устройств относительно невелик

DLP-технология

Лежащая в основе любого DLP-проектора технология цифровой обработки света (DLP) базируется на разработках корпорации Texas Instruments, создавшей новый тип формирователя изображения - цифровое микрозеркальное устройство DMD (Digital Micromirror Device). DMD-формирователь представляет собой кремниевую пластину, на поверхности которой размещены сотни тысяч управляемых микрозеркал. Главное его преимущество по сравнению с формирователями иного типа заключается в высокой световой эффективности, обусловленной двумя факторами: более эффективным использованием рабочей поверхности формирователя (коэффициент использования - до 90%) и меньшим поглощением световой энергии работающими "на отражение" микрозеркалами, которые к тому же не требуют применения поляризаторов. В силу этих причин, а также относительно простого решения проблемы отвода тепла, DLP-технология позволяет создавать как мощные проекционные аппараты с большим световым потоком (в настоящее время достигнут уровень 18000 ANSI-лм), так и сверхминиатюрные проекторы (ультрапортативные, микропортативные) для мобильных пользователей. Именно в этих классах продуктов DLP-технология сегодня доминирует.

Современные DLP-проекторы строятся по схеме с одним, двумя и тремя DMD-кристаллами (см. Устройство DLP-проектора). Как и LCD-аппараты, они характеризуются собственным оптическим разрешением, определяемым числом микрозеркал в DMD-матрице, и наилучшим образом приспособлены для воспроизведения графической и видеоинформации, хранящейся в цифровом формате (компьютерные файлы, изображения).

Используемый в них принцип формирования полутонов (а также полноцветного изображения в устройствах с одной DMD-матрицей) основывается на свойстве человеческого глаза усреднять визуальную информацию за короткий промежуток времени и требует применения сложных алгоритмов пересчета входных данных в управляющие микрозеркалами ШИМ-последовательности (сигналы с широтно-импульсной модуляцией). Качество алгоритмов во многом определяет достигаемую точность цветопередачи.

Устройство DLP- проектора

DMD-кристалл, по сути, представляет собой полупроводниковую микросхему статической оперативной памяти (SRAM), каждая ячейка которой, а точнее ее содержимое, определяет положение одного из множества (от нескольких сотен тысяч до миллиона и более) размещенных на поверхности подложки микрозеркал с размерами 16х16 мк.

Как и управляющая ячейка памяти, микрозеркало имеет два состояния, отличающиеся направлением поворота зеркальной плоскости вокруг оси, проходящей по диагонали зеркала. В каждом состоянии угол между плоскостью зеркала и поверхностью микросхемы составляет 10 градусов. Таким образом, принципиальной особенностью любого DMD кристалла является наличие в его структуре подвижных механических элементов.
В DLP проекторах DMD кристалл выполняет функции формирователя изображения. В зависимости от положения микрозеркала отраженный им световой поток направляется либо в объектив тогда на экране формируется светлое пятно, либо в светопоглотитель тогда соответствующий участок экрана остается затемненным.

Принцип формирования изображения с помощью DMD-матрицы (Digital Micromirror Device)

Для воспроизведения полутонов применяется метод широтно-импульсной модуляции (ШИМ) сигналов, управляющих переключением зеркал. Чем больше времени в течение усредняемого глазом интервала в 1/60 секунды микрозеркало проводит в состоянии "включено", тем ярче пиксел на экране.


Пример формирования участка изображения LCD и DLP матрицами Современные DLP-проекторы строятся по схеме с одним, двумя и тремя DMD-матрицами.

Оптическая схема одноматричного DLP-проектора

В одноматричном DLP-проекторе световой поток лампы пропускается через вращающийся фильтр с тремя секторами, окрашенными в цвета составляющих пространства RGB (в современных моделях к трем цветным секторам добавлен четвертый - прозрачный, что позволяет увеличить световой поток мультимедийного проектора при демонстрации изображений с преобладающим светлым фоном).
В зависимости от угла поворота фильтра (а, следовательно, и цвета падающего светового потока) DMD-кристалл формирует на экране синюю, красную или зеленую картинки, которые последовательно сменяют одна другую за короткий интервал времени. Усредняя отражаемый экраном световой поток, человеческий глаз воспринимает изображение как полноцветное. По схеме с одним DMD-кристаллом в настоящее время строятся наиболее миниатюрные DLP-проекторы. Они применяются для проведения мобильных бизнес-презентаций, а также для демонстрации цветного видео. Следует, однако, учитывать, что в последнем случае световой поток проектора с четырех секторным цветным фильтром оказывается ниже указанного в техническом паспорте, т. к. в этом режиме прозрачный сектор не работает, и эффективность использования светового потока лампы снижается.


Оптическая схема двухматричного DLP-проектора

В двухматричных DLP-проекторах вращающийся цветной фильтр имеет два сектора пурпурного (смесь красного с синим) и желтого (смесь красного и зеленого) цветов. Дихроичные призмы разделяют световой поток на составляющие, при этом поток красного цвета в каждом случае направляется на одну из DMD-матриц. На вторую в зависимости от положения фильтра направляется поток либо синего, либо зеленого цвета. Таким образом, двухматричные проекторы, в отличие от одноматричных, проецируют на экран картинку красного цвета постоянно, что позволяет компенсировать недостаточную интенсивность красной части спектра излучения некоторых ламп.

Оптическая схема трехматричного DLP-проектора

В трехматричных DLP-проекторах световой поток лампы с помощью дихроичных призм расщепляется на три составляющих (RGB), каждая из которых направляется на свою DMD-матрицу, формирующую картинку одного цвета. Объектив аппарата проецирует на экран одновременно три цветных картинки, формируя таким образом полноцветное изображение.
Благодаря высокой эффективности использования светового излучения лампы, трехматричные DLP-проекторы, как правило, характеризуются повышенным световым потоком, достигающим у наиболее мощных аппаратов 18000 ANSI-лм.


Новые направления

Лазерные проекторы

В некоторой степени наследником электронно-лучевых трубок являются лазерные проекторы, в которых изображение формируется за счет излучения трех (иногда больше) лазеров. Наследниками – потому, что матрица лазеров формирует три луча тех же цветов, которые потом смешиваются и изображение создается очень сложной системой фокусировки и развертки, в которой находится специальная система зеркал. По своей сути, формирование изображения таким проектором подобно картинке на экране ЭЛТ телевизора - лазерный луч «обегает» проекционный экран сверху вниз до 50 раз в секунду, и глаз человека воспринимает получившуюся картину как единое целое.

Излучающая головка лазерного проектора в разобранном состоянии

Реалистичное изображение формируется при этом практически на любой, в том числе и неровной, поверхности, а его характеристики достаточно высоки. С 2000 года, когда началось серийное производство таких проекторов, они стали выдавать более качественную картинку, но все еще остаются проблемы с цветопередачей, хотя изображение и обладает впечатляющими показателями контраста и яркости. Такие проекторы пока остаются в большей степени дорогими профессиональными инструментами – они излишне велики и потребляют много энергии. Однако они имеют конструкцию, позволяющую разделить излучающую батарею лазеров с большим тепловыделением и проецирующую часть. Также время жизни лазера заметно превосходит срок службы лампы традиционных проекторов, а энергии при сопоставимых параметрах яркости, расходуется также меньше.

Ну и самым главным параметром лазерных проекторов является их способность создавать изображения на огромных диагоналях – размеры экранов могут быть до нескольких десятков метров.

Для получения изображения объекта нам необходим как минимум сам объект и линза (или объектив, состоящий из нескольких линз, но работающий, как одна). Чтобы понять работу проектора, сначала вспомним курс физики. Основное свойство линзы заключается в следующем: все лучи, попадающие в линзу параллельно ее оптической оси, пройдя через линзу, сходятся в одну точку на оптической оси. Эта точка называется фокусом, а расстояние от центра линзы до этой точки -- фокусным расстоянием. Верно и обратное: любой луч, проходящий через фокус линзы и попадающий в линзу, покидает ее параллельно оптической оси. Кроме того, любой луч, проходящий через центр линзы, сохраняет свое направление.

Смотрим на схему:

Имеем объект O , находящийся за фокусом линзы (F ). Чтобы понять ход лучей, нам достаточно рассмотреть две крайние точки объекта (все остальные точки будут подчиняться той же схеме). Кроме того, при геометрическом построении достаточно рассмотреть всего по два луча для каждой точки (пунктирные линии): один проходящий через центр линзы, другой -- параллельно оптической оси. Каждая пара лучей, проходящие от объекта через линзу, пересекаются с другой стороны на расстоянии, большем удвоенного фокусного расстояния линзы. При этом все остальные лучи (сплошные линии), исходящие от объекта, пересекутся там же. В месте пересечения лучей и будет сформировано изображение объекта O" , причем изображение будет перевернуто и увеличено. Для того, чтобы его увидеть, нужно в эту точку поместить экран.

Для нашего проектора схема с учетом пропорций компонентов будет иметь примерно следующий вид (пунктирные линии -- не реальные лучи, а используются только для геометрического построения) :

Для того, чтобы получить яркое изображение, объект должен излучать свет. В нашем случае объект излучать свет не может, зато в наших силах его подсветить, установив за объектом лампу. В обычных кинопроекторах лампа освещает кинопленку, в нашем случае проецируемым объектом является матрица (панель) от LCD монитора. Подробнее о матрице см. соответствующий раздел .

Если просто установить за объектом лампу, получим следующую картину:

Выходит, что в объектив попадает только часть лучей от лампы, проходящих сквозь панель. В итоге на экране мы получим лишь часть изображения. Чтобы этого избежать, используется вторая линза. Размер этой линзы должен быть не меньше размера панели.

Изготовить стеклянную выпуклую линзу такого размера практически нереально, а ее вес исчислялся бы десятками килограмм. Поэтому в проекторе используется плоская линза Френеля. В форуме и на этом сайте используется уменьшительно-ласкательно-жаргонное наименование "френель" (женского рода). Подробнее о линзе Френеля см. следующий раздел . Сейчас нам достаточно знать, что френель плоская, тонкая, но ведет себя, как обычная выпуклая линза. Установив френель между лампой и панелью, получаем вот что:

На этой схеме ход лучей несколько упрощен, подробнее см. в разделе оптика .

Если рассматривать в качестве источника света лампу (любой конструкции), приходится принимать во внимание, что свет излучается ей во все стороны практически равномерно. Наша задача -- собрать максимум светового потока на френели. Для этого используются два дополнительных элемента -- сферический отражатель и конденсорная линза.

Сферический отражатель устанавливается за лампой и отражает все лучи от лампы обратно. Строго говоря, он формирует зеркальное изображение лампы на самой лампе. Лампа при этом располагается в центре кривизны зеркала, т.е. на расстоянии от поверхности, равном радиусу кривизны сферы. Это расстояние, в свою очередь, равно удвоенному фокусному расстоянию сферического зеркала. При использовании галогенной лампы, где свет излучается непрозрачной нитью, это зеркальное отражение нити частично затеняется самой нитью. При использовании металлогалогенной лампы, в которой свет излучается электрической дугой, эффективность отражателя наиболее высока -- лучи проходят от отражателя сквозь дугу, фактически удваивая эффективный световой поток.

В правильности термина "конденсораная линза" я в данном случае не уверен. Кроме этого названия мне еще встречалось "менисковая линза". Если точно знаешь, как правильно, сообщи, исправлю.

Конденсорная линза -- это выпукло-вогнутая линза, устанавливаемая между лампой и френелью. Ее форма позволяет захватить более широкий пучок света от лампы (другими словами, увеличить телесный угол светового пучка), увеличивая таким образом яркость. Длина системы при этом также уменьшается. Конденсорные линзы ставятся во многих оверхед-проекторах. Отдельно достать конденсорную линзу довольно сложно.

Все рассматриваемые выше схемы являются, так сказать, линейными, т.е. все компоненты лежат на одной оси. Это наиболее простой, но наименее компактный вариант. Чтобы создать более компактный аппарат, можно использовать зеркала. Причем необходимы зеркала с внешним отражающим слоем, чтобы изображение не двоилось. Вот некоторые варианты использования зеркал:

Вопрос на сообразительность: что напоминает левая схема? Правильно, оверхед-проектор.

Итак, при строительстве проектора главная задача -- реализовать одну из вышеуказанных схем. А это значит, что необходимо изготовить корпус, раздобыть объектив, френель, матрицу, лампу, отражатель, конденсорную линзу (если получится), зеркала (если нужно), установить это все в корпус и обеспечить вентиляцию. Ну или не изготавливать корпус, если речь идет об использовании оверхед-проектора.



Понравилась статья? Поделитесь ей