Контакты

Обработка изображений и фильтрации статических и динамических изображений: обзор технолога. Статическое изображение Что такое статическое изображение

Вероятно, сегодня практически каждый пользователь представляет себе основной принцип хранения и отображения графической информации на компьютере. Тем не менее, скажем об этом несколько слов, чтобы последующие сведения о цифровом видео (которое представляет собой динамически сменяющую друг друга последовательность изображений) были для нас понятнее.

На первый взгляд, качественный рисунок, будучи отображенным на экране хорошего монитора, мало чем отличается от обычной фотографии. Однако на уровне представления изображения это отличие просто огромно. В то время, как фотографический снимок создается на молекулярном уровне (т. е. составляющие его элементы принципиально не различимы человеческим зрением, независимо от увеличения), рисунки на экране монитора (и, подчеркнем, в памяти компьютера) формируются благодаря пикселам (или пикселям) - элементарным составляющим изображения (чаще всего) прямоугольной формы. Каждый пиксел имеет свой определенный цвет, однако из-за их малого размера отдельные пикселы (почти или вовсе) неразличимы глазом, и у человека, рассматривающего картинку на экране монитора, их большое скопление создает иллюзию непрерывного изображения (рис. 1.2).

Примечание
Изображения на экранах компьютеров формируются при помощи пикселов квадратной формы. В отличие от компьютеров, во многих стандартах телевидения используются не квадратные, а прямоугольные пикселы. Параметром, характеризующим отношение размеров пикселов, выступает отношение их горизонтального и вертикального размеров, или пропорции пиксела (pixel aspect ratio ). Более подробно с этой характеристикой вы можете познакомиться на уроке 4
.

Рис. 1.2 . Изображения на компьютере формируются благодаря пикселам

Каждый пиксел (кстати, слово pixel образовано от первых двух букв английских слов picture element ) представляет информацию о некоторой "средней" интенсивности и цвете соответствующей области изображения. Общее число пикселов, представляющих рисунок, определяют его разрешение. Чем больше пикселов создают изображение, тем естественнее оно воспринимается человеческим глазом, тем, как говорят, выше его разрешение (рис. 1.3). Таким образом, пределом "качества" компьютерного рисунка является размер формирующих его пикселов. Более мелкие, чем пикселы, детали компьютерного рисунка совершенно теряются и в принципе невосстановимы. Если рассматривать такой рисунок в увеличительное стекло, то, по мере увеличения, мы увидим только расплывающееся скопление пикселов (см. рис. 1.2), а не мелкие детали, как это было бы в случае качественного фотоснимка.


Рис. 1.3 . Общее число пикселов (разрешение) определяет качество изображения

Здесь стоит оговориться, что, во-первых мы имеем в виду традиционную (аналоговую, а не цифровую) фотографию (т. к. принцип цифровой фотографии как раз тот же самый, что и обсуждаемый принцип формирования изображения из пикселов), а во-вторых, даже для нее, говоря о качестве изображения, всегда следует помнить о самой технологии фотографии. Ведь изображение на фотопленке появляется благодаря прохождению света через объектив фотокамеры, и его качество (в частности, четкость и различение мелких деталей) напрямую зависит от качества оптики. Поэтому, строго говоря, "бесконечная" четкость традиционного фотографического снимка, о которой мы говорили, является некоторым преувеличением.

Примечание
На самом деле, современные цифровые фотокамеры позволяют зафиксировать изображение, разрешение которого практически не уступает аналоговому (в том смысле, что сейчас возможно оцифровать такое количество пикселов, которое будет "перекрывать" границы разрешения самой оптики). Однако для предмета нашей книги этот факт не играет важной роли, т. к. в настоящее время цифровое видео в подавляющем большинстве случаев передается именно с невысоким разрешением (относительно малым общим числом пикселов) и принимать во внимание такой параметр, как разрешение, просто необходимо
.

Итак, немного упрощая, чтобы представить рисунок в цифровом виде, необходимо покрыть его прямоугольной сеткой размера MxN (M точек по горизонтали и N по вертикали). Это сочетание чисел MxN (например, 320x240, 800x600 и т. д.) и называют разрешением (resolution ) изображения, или размером кадра (frame size ). Затем следует усреднить данные о структуре изображения в пределах каждого пиксела и записать соответствующую информацию о каждом из MxN пикселов изображения в графический файл. Для цветного изображения это будет информация о конкретном цвете каждого пиксела (о компьютерном представлении цвета написано чуть ниже в этом разделе), а для черно-белых изображений - это информация об интенсивности черного цвета. Чтобы объяснить еще несколько важных параметров компьютерного представления изображений, остановимся далее чуть подробнее на их последнем типе - рисунках, выполненных в оттенках серого цвета (grayscale ), т. е. в градации от белого до черного.

Технологи медицинской радиологии (TМР) обычно выполняют многочисленные манипуляции с компьютером для усовершенствования диагностических изображений, чтобы помочь в правильной интерпретации. Хотя опытные технологи, как правило, осведомлены о визуальных последствия своих манипуляций, они не могут в полной мере понять математические и научные принципы, положенные в действие одного нажатия мыши. Принципы могут быть сложными для всех, кроме наиболее технологически подкованных ТМР. По всей вероятности, математическая обработка изображений в учебниках и статьях запугивает, препятствует или, возможно, является неинтересной ТМР. Тем не менее, преодолевая сопротивление и понимая основные принципы, лежащие в обработке изображений, ТМР могут расширить их возможности для получения высокого качества диагностических изображений.

Нельзя исключать математику из обсуждения обработки изображений и фильтрации. В этой статье будут описаны принципы, лежащие в ряде общих процедур. Это описание должно быть приемлемым для технологов различных уровней математического знания. Первые процедуры, которые будут обсуждаться, простые процедуры, связанные со статическими изображениями. Далее, более сложные процедуры, связанные с динамическими изображениями. Значительная часть обработки изображений и фильтрации происходит с физиологически закрытыми изображениями и ОФЭКТ (однофотонной эмиссионной компьютерной томографии) изображений. К сожалению, сложность этих вопросов не дает подробное описание здесь.

Обработка статических изображений

Статические изображения, которые были перенесены непосредственно на пленку в режиме реального времени, представлены в аналоговом формате. Эти данные могут иметь бесконечный диапазон значений и могут создавать изображения, которые точно отражают распределение радионуклидов в органах и тканях. Хотя эти изображения могут быть очень высокого качества, если они получены правильно, в режиме реального времени сбор информации обеспечивает только одну возможность для приобретения данных. По причине человеческого фактора или других ошибок, может потребоваться повтор получения изображения и, в некоторых случаях, повтор целых исследований.

Статические изображения, переданные в компьютер для хранения или улучшения, представлены в цифровом формате. Это осуществляется в электронном виде с аналого-цифровым преобразователем. В старых камерах, это превращение происходило через ряд резисторных сетей, которые содержат силы сигнала, поступающего от нескольких фотоумножителей, и вырабатывали цифровой сигнал, пропорциональный энергии излучения событий.

Независимо от метода, используемого для оцифровки изображений, цифровой выход назначает дискретное значение обработанных аналоговых данных. В результате получаются изображения, которые могут храниться и обрабатываться. Тем не менее, эти образы являются только приближением оригинальных аналоговых данных. Как можно видеть на рисунке 1, цифровое представление имеет примерный вид, но не дублирует аналоговые сигналы.

Рисунок 1 – Аналоговая кривая и ее цифровое представление

Цифровые изображения радиологической медицины состоят из матрицы, выбранной технологом. Некоторые общие матрицы, используемые в радиологической медицине: 64х64, 128х128 и 256х256. В случае матрицы 64х64, экран компьютера делится на 64 ячейки по горизонтали и 64 по вертикали. Каждый квадрат в результате такого разделения называется пикселем. Каждый пиксель может содержать ограниченное количество данных. В 64х64 матрице, будет в общей сложности 4096 пикселей на экране компьютера, матрица 128х128 дает 16384 пикселя, а 256х256 – 65536 пикселей.

Изображения с большим количеством пикселей больше напоминают оригинальные аналоговые данные. Тем не менее, это означает, что компьютер должен хранить и обрабатывать больше данных, для чего необходимо больше места на жестком диске и предъявляются более высокие требования к оперативной памяти. Большинство статических изображений получены для визуального осмотра врачом радиологической медицины, поэтому они обычно не требуют значительного статистического или численного анализа. Ряд общих статических методов обработки изображений обычно используется для клинических целей. Эти методы не обязательно являются уникальными для статической обработки изображений, и могут применяться в некоторых приложениях для динамических, физиологически закрытых или ОФЭКТ-изображений. Это следующие методы:

Шкалирование изображений;

Вычитание фона;

Сглаживание / фильтрация;

Цифровое вычитание;

Нормализация;

Изображение профиля.

Шкалирование изображений

При просмотре цифровых изображений для визуального контроля или для записи изображений, технологу необходимо выбрать правильное шкалирование изображения. Шкалирование изображения может происходить либо в черно-белом формате с промежуточными оттенками серого или в цветном формате. Самой простой серой шкалой будет шкала с двумя оттенками серого, а именно белым и черным. В этом случае, если значение пикселя превышает заданное пользователем значение, на экране будет появляться черная точка, если значение окажется меньше, то белая (или прозрачная в случае с рентгеновскими изображениями). Эта шкала может быть инвертирована на усмотрение пользователя.

Чаще всего используется шкала из 16, 32 или 64 оттенков серого. В этих случаях пиксели, содержащих наиболее полную информацию выглядят как темные тени (черные). Пиксели, содержащие минимум информации выглядят как самые светлые оттенки (прозрачные). Все остальные пиксели будут выглядеть как оттенки серого, основанные на количестве информации, которую они содержат. Взаимосвязь между количеством точек и оттенков серого может быть определена линейно, логарифмически, или экспоненциально. Важно выбрать правильный оттенок серого. Если слишком много оттенков серого цвета выбрано, изображение может выглядеть размытым. Если слишком мало – изображение может выглядеть слишком темными (рис. 2).

Рисунок 2 – (A) изображения с большим количеством оттенков серого цвета, (В) изображение с малым количеством оттенков серого, (C) изображение с правильными градациями серого

Цветовой формат может быть использован для шкалирования изображения, и в этом случае процесс совпадает с серой шкалой манипуляций. Однако, вместо отображения данных в оттенки серого, данные отображаются в разные цвета в зависимости от количества информации, содержащейся в пикселе. Хотя цветные изображения являются привлекательными для начинающих и более наглядными для целей общественного отношения, цветные изображения мало что добавляют к интерпретируемости фильма. Таким образом, многие врачи по-прежнему предпочитают просматривать изображения в градациях серого.

Вычитание фона

Существуют многочисленные нежелательные факторы в изображениях радиологической медицины: фон, Комптоновский разброс, и шум. Эти факторы являются необычными для радиологической медицины по отношению к локализации радиофармпрепаратов в пределах одного органа или ткани.

Такие аномальные значения (отсчеты) вносят существенный вклад в ухудшение изображения. Отсчеты, собранные из лежащих и перекрывающихся источников являются фоном. Комптоновский разброс обусловлен фотоном, отклонившимся от своего пути. Если фотон был отклонен от гамма-камеры, или потерял достаточно энергии, чтобы быть отличимым камерой электроники, это не столь важно. Тем не менее, бывают случаи, когда фотон отклоняется в сторону камеры и его потеря энергии может быть достаточно большой для камеры, чтобы определить его как разброс. В этих условиях, Комптоновский разброс может регистрироваться камерой, который произошел от других источников, помимо областей, представляющих интерес. Шум представляет собой случайные флуктуации в электронной системе. При нормальных обстоятельствах, шум не способствует нежелательным выбросам в той же степени как фон и комптоновское рассеяние. Однако, как фон и комптоновское рассеяние, шум может способствовать ухудшению качества изображения. Это может быть особенно проблематичным для исследований, в которых количественный анализ играет важную роль в окончательной интерпретации исследования. Проблемы фона, Комптоновский разброс, и шум могут быть сведены к минимуму с помощью процесса, известного как вычитания фона. Как правило, технолог привлекает область интереса (ROI), пригодную для вычитания фона, но в некоторых случаях, область интереса генерируется компьютером (рис. 3).

Рисунок 3 – Изображение сердца. Демонстрация правильного размещения вычитание фона ROI (стрелка)

Независимо от способа, за правильное размещение фона ROI ответственность несет технолог. Фон регионов с более высоким количеством областей может снимать слишком много параметров с органа или ткани в области интереса. С другой стороны, фон регионов с исключительно низкими количеством областей снимет слишком мало параметров с изображения. Обе ошибки могут привести к неправильной интерпретации исследования.

Вычитание фона определяется путем сложения числа отсчетов в фоновом режиме ROI и деления на количество пикселей, которые содержатся в фоне ROI. После этого полученное число вычитается из каждого пикселя в органе или ткани. Например, предположим, что фон ROI составил 45 пикселей и содержит 630 отсчетов. Среднее число фоне:

630 отсчетов/45 пикселей = 14 отсчетов/пиксель

Сглаживание / фильтрация

Целью сглаживания является снижение шума и улучшение визуального качества изображения. Часто, сглаживание называется фильтрацией. Есть два типа фильтров, которые могут быть полезны в области радиационной медицины: пространственные и временные. Пространственные фильтры применяются как для статических, так и для динамических изображений, тогда как временные применяются только для динамических изображений.

В самом простом методе сглаживания используется квадрат 3-х-3 пикселей (всего девять), а также определяется значение в каждом пикселе. Значения пикселей в квадрате усредняются, и это значение присваивается центральному пикселю (рис. 4). По усмотрению технолога, эта же операция может быть повторена для всего экрана компьютера или ограниченной зоны. Подобные операции могут быть выполнены с 5-х-5 или 7-х-7 квадратов.

Рисунок 4 – 9-типиксельная простая схема сглаживания

Аналогичная, но более сложная операция предполагает создание ядра фильтра путем взвешивания значений пикселей, окружающих центральный пиксель. Каждый пиксель умножается на соответствующие взвешенные значения. Далее, значения ядра фильтра суммируются. Наконец, сумма значений ядра фильтра делится на сумму взвешенных значений и значение присваивается центральному пикселю (рис. 5).

Рисунок 5 – 9-типиксельная схема сглаживания со взвешенным ядром фильтра

Недостатком является то, что при сглаживании, хотя образ может быть более привлекательным визуально, изображение может быть размытым, и есть потеря в разрешении изображения. Конечное использование ядра фильтра включает в себя взвешивание с отрицательными значениями вдоль периферических пикселей с положительным значением в центре пикселя. Этот метод взвешивания имеет тенденцию к активизации количества расхождений между соседними пикселями и может быть использован для повышения вероятности обнаружения границ органов или тканей.

Цифровое вычитание и нормализация

Обычная проблема в радиологической медицине предотвращать происходящую активность от сокрытия или маскировки аномальных участков накопления индикатора. Многие из этих трудностей были преодолены за счет применения ОФЭКТ технологии. Тем не менее, необходимы более умные методы, чтобы получить соответствующую информацию из плоского изображения. Одним из таких методов является цифровое вычитание. Цифровое вычитание включает вычитание одного изображения из другого. Оно основано на предпосылке, что некоторые радиофармпрепараты локализованы в нормальных и патологических тканях, что делает правильность интерпретации трудной для врача. Чтобы помочь в дифференциации между нормальной и патологической тканями, второй радиофармпрепарат вводится только в пределах здоровых тканей. Изображение распределения второго радиофармпрепарата вычитается из образа первого, оставив только изображение аномальной ткани. Крайне важно, чтобы пациент оставался неподвижным между первым и вторым введением.

Когда технолог вычитает высококоличественное второе изображение из низкоколичественного первого изображения, можно удалить достаточные значения из аномальной ткани, что сделает вид «нормальной» (рис. 6).

Рисунок 6 – Цифровое вычитание без нормализации

Чтобы избежать ложно-отрицательных результатов исследования, изображения должны быть нормализованы. Нормализация представляет собой математический процесс, в котором разрозненные отсчеты между двумя изображениями согласовываются. Для нормализации изображения, технологу необходимо выделить небольшую области интереса возле ткани, которая считается нормальной. Число отсчетов в регионе в первом изображении (с низким кол-вом) разделена на графы в такой же области второго (с высоким кол-вом). Это даст коэффициент умножения, подсчета всех пикселей, составляющих первое изображение. На рисунке 7, «нормальная зона», в расчете это будет верхний левый пиксель. Это число в «нормальной области» (2), разделенное на соответствующий пиксель второго изображения (40), дает коэффициент умножения 20. Все пиксели в первом изображении, затем умножается на коэффициент 20. Наконец, второе изображение будет вычитаться из количества на первом изображении.

Рисунок 7 – Вычитание фона с нормализацией

Изображение профилирования

Изображение профилирования простая процедура, которая используется для количественной оценки различных параметров на статическом изображении. Для профилирования изображения, технолог открывает соответствующее приложение на компьютере, и позиционирует линию по экрану компьютера. Компьютер будет рассматривать пиксели, указанные линией и построит график зависимости числа отсчетов, содержащихся в пикселях. Изображение профиля имеет несколько применений. Для статического исследования перфузии миокарда, профиль берется через миокард для оказания помощи в определении степени перфузии миокарда (рис. 8). В случае исследования крестцово-подвздошной области, профиль используется с целью оценки однородности костного поглощения агента крестцово-подвздошных суставов на изображении. Наконец, изображение профилей могут быть использованы в качестве контроля для анализа контраста камеры.

Рисунок 8 – Изображение профиля миокарда

Обработка динамических изображений

Динамическое изображение – это набор статических изображений, полученных последовательно. Таким образом, предыдущее обсуждение о составе аналоговых и цифровых статических изображений применимо к динамическим изображениям. Динамические изображения, полученные в цифровом формате, состоят из матриц, выбранных технологом, но, как правило, это матрицы размера 64-х-64 или 128-х-128. Хотя эти матрицы могут поставить под угрозу разрешение изображения, они требуют значительно меньше памяти для хранения и оперативной памяти, чем матрицы 256-х-256.

Динамические изображения, используемые для оценки скорости накопления и / или скорости выведения РФП из органов и тканей. Некоторые процедуры, например, трехфазное сканирование кости и желудочно-кишечных кровотечений, требуют только визуального осмотра врача, чтобы сделать диагностическое заключения. Другие исследования, такие как нефрограмма (рис. 9), желудочные исследования опорожнения и гепатобилиарной фракции выброса, требует количественной оценки, как части диагноза врача.

В этом разделе обсуждается ряд общих методы для динамической обработки изображений, применяемых в клинической практике. Эти методы не обязательно являются уникальными для динамической обработки изображений, а некоторые будут иметь применение для физиологически закрытых или ОФЭКТ изображений. Это методы:

Суммирования / дополнения изображений;

Временной фильтр;

Кривые времени активности;

Суммирование изображений / дополнение

Суммирование изображений и дополнение являются взаимозаменяемыми терминами, которые относятся к одному процессу. В этой статье будет использоваться термин суммирование изображений. Суммирование изображений – процесс суммирования значений нескольких изображений. Хотя могут возникнуть обстоятельства, при которых суммированные изображения будут количественными, но это больше исключение, чем правило. Потому что причина суммирования изображения редко используется для количественных целей, не стоит выполнять нормализацию суммированием изображений.

Изображения исследования могут быть суммированы либо частично, либо полностью, чтобы получить одно изображение. Альтернативный метод включает в себя сжатие динамического изображения в меньшее количество кадров. Независимо от используемого метода, главным преимуществом суммирования изображения является косметический характер. Например, последовательные изображения с низким количеством исследований будут суммироваться, чтобы визуализировать изучаемый орган или ткань. Очевидно, дальнейшей обработке изображений визуализации органов и тканей будет способствовать технолог, что поможет врачу в визуальной интерпретации результатов исследования (рис. 9).

Рисунок 9 – (A) нефрограмма до и (B) после суммирования

Временная фильтрация

Цель фильтрации – снижение шума и улучшение визуального качества изображения. Пространственная фильтрация, часто известная как сглаживание, применяется к статическим изображениям. Однако, поскольку динамические изображения – последовательно расположенные статические изображения, целесообразно применять пространственные фильтры, и для динамических.

Различные типы фильтров, временной фильтр, применяется для динамических исследований. Пиксели в последовательных кадрах динамического анализа вряд ли испытывают огромные колебания накопленных отсчетов. Тем не менее, небольшие изменения в одном кадре от предыдущего могут приводить к «мерцанию». Временные фильтры успешно сокращают мерцания, одновременно минимизируя значительные статистические флуктуаций данных. Эти фильтры используют технику среднего взвешенного, при которой пикселю присваивается средневзвешенное значение идентичных пикселей предыдущего и последующего кадров.

Кривые времени активности

Количественное использование динамических изображений для оценки скорости накопления и / или скорости выведения РФП из органов или тканей, в конечном счете связаны с кривой времени активности. Кривые времени активности используются для демонстрации того, как отсчеты в интересующей нас области будут меняться с течением времени. Врачи могут быть заинтересованы в скорости накопления и выведения отсчетов (например, нефрограмма), скорость выделения (например, гепатобилиарной фракции выброса, опорожнение желудка), или просто изменение рассчитываемое в течение долгого времени (например, радиоизотопная вентрикулография).

Независимо от процедуры, кривые времени активности начнаются с определения ROI вокруг органа или ткани. Технолог может использовать световое перо или мышь для рисования ROI. Тем не менее, есть некоторые компьютерные программы, которые автоматически делают выделение путем контурного анализа. Низкое количество исследований могут стать проблемой для технологов, так как органы и ткани могут быть трудным для понимания. Надлежащего выделение ROI может потребовать от технолога, суммирования или сжимания до тех пор, пока границы органа или ткани не будут легко различимы. Для некоторых исследований, ROI останется той же на протяжении всех исследований (например, нефрограмма), тогда как в других исследованиях ROI может иметь разный размер, форму и расположение (например, опорожнение желудка). В количественных исследованиях, крайне важно, чтобы был откорректирован фон.

После подсчета в ROI определяется для каждого кадра и фон вычитается из каждого изображения, обычно для построения данных во времени вдоль оси X и рассчитывает по оси Y (рис. 10).

Рисунок 10 – Имитация кривой времени активности

В результате кривая времени будет визуально и численно сравнима с устоявшейся нормой для каждого конкретного исследования. Почти во всех случаях, скорость накопления или выделения, а также общей формы кривой от нормального исследования, используются для сравнения, чтобы определить окончательные интерпретации результатов исследования.

Заключение

Количество процедур, которые применяются для статического изображения, также могут быть применены к динамической визуализации. Сходство обусловлено тем, что динамические изображения – последовательный ряд статических изображений. Тем не менее, количество динамических процедур не имеет статические эквиваленты. Некоторые манипуляции статических и динамических изображений не имеют количественных результатов. Многие процедуры направлены на улучшение изображения изображение. Тем не менее, отсутствие количественных результатов не делает процедуру менее важной. Это говорит о том, что картинка стоит тысячи слов. Кроме того, высокое качество, компьютерное улучшение диагностических изображений, благодаря правильной интерпретации, может иметь значение в повышении качества жизни человека.

Список использованной литературы

1. Bernier D, Christian P, Langan J. Nuclear Medicine: Technology and Techniques. 4th ed. St. Louis, Missouri: Mosby; 1997: 69.
2. Early P, Sodee D. Principles and Practices of Nuclear Medicine. St. Louis, Missouri: Mosby; 1995: 231.
3. Mettler F, Guiberteau M. Essentials of Nuclear Medicine Imaging, 3rd ed. Philadelphia, Penn: W.B. Saunders; 1991: 49.
4. Powsner R, Powsner E. Essentials of Nuclear Medicine Physics. Malden, Mass.: Blackwell Science; 1998: 118-120.
5. Faber T, Folks R. Computer processing methods for nuclear medicine images. J Nucl Med Technol. 1994;22:145-62.

В семействе Photoshop в новой версии Photoshop СС 2014 появился новый фильтр Размытие Контура (Path Blur), замечательный инструмент для добавления эффекта движения и улучшения синхронизации движения на изображении. Фотографии с движением, будь то брошенный мяч, гоночная машина или скачущая лошадь, наиболее удачны для создания синхронизации движения и добавления сюжетной картинки или направления движения, в противном случае, изображения остаются статичными.

В этом уроке, фотограф Tigz Rice покажет вам, как можно улучшить фотографию танцовщицы с помощью создания эффекта синхронизации движения в программе Photoshop.

Tigz также раскроет секреты работы с новым фильтром Размытие Контура (Path Blur filter) в новой версии программы Photoshop CC 2014.

Итоговый результат

Шаг 1

Откройте выбранное изображение в программе Photoshop CC 2014, а затем преобразуйте данное изображение в Смарт-объект (Smart Object), щёлкнув правой кнопкой мыши по слою с исходным изображением и в появившемся окне, выберите опцию Преобразовать в Смарт -объект (Convert To Smart Object).

Подсказка: Работа со Смарт-объектом даёт вам свободу действия при внесении изменений в любой момент рабочего процесса, а не полагаться на панель История.

Шаг 2

Далее, идём Фильтр - Галерея Размытия - Размытие Контура (Filter > Blur Gallery > Path Blur), далее, появится окно настроек инструмента Размытия. Программа Photoshop автоматически добавит синий контур к вашему изображению для контроля направления размытия.

Примечание переводчика: Галерея Размытия (Blur Gallery)- это окно настроек инструмента Размытия (Blur Tools), один из параметров настроек данного инструмента - это Размытие Контура (Path Blur), этому параметру и посвящён данный урок.

Щёлкните мышкой + потяните за конец контура для контроля направления размытия, которое вы применяете. Также можно добавить среднюю точку к контуру, которую можно двигать, чтобы придать вашему контуру кривизны.

Подсказка: чтобы дополнительно добавить точек для искривления вашего контура, щёлкните в любом месте вдоль синей линии.

Шаг 3

Щёлкните мышкой по любой части изображения + потяните мышку, чтобы дополнительно создать контуры размытия на вашем изображении. В исходном изображении, я создал контур движения для каждой ноги и руки, плюс дополнительно для головы и последний контур для прозрачной ткани.

Подсказка: Вы можете контролировать интенсивность каждого контура размытия, путём наведения курсора мыши на конец контура и использования маленьких круглых бегунков, которые появятся.

Примечание переводчика: контролировать интенсивность каждого контура означает, что вы можете менять интенсивность размытия каждого отдельного элемента изображения.

Шаг 4

В окне настроек инструмента Размытия (Blur Tools), в настройках параметра Размытие Контура (Path Blur) в правой части документа, щёлкните по выпадающему меню и в появившемся списке выберите опцию “Rear Sync Flash”, данная опция имитирует настройки фотоаппарата и создаёт застывший световой импульс проблеска на конце каждой точки размытия.

Выставьте параметры Скорость (Speed) и Плавный переход (Taper), пока вы не получите желаемый эффект. Как только вас устроит контур размытия, нажмите OK.

Шаг 5

Возвращаемся в основное окно Photoshop, теперь вы можете скрыть ваши контуры размытия, щёлкнув по маске Смарт-фильтра и нажав клавиши (Ctrl + I) для инверсии маски в чёрной цвет, данный цвет скроет эффект размытия на вашем изображении. Далее, выберите инструмент Кисть (Brush tool (B)), установите мягкую кисть, цвет кисти белый, и с помощью данной кисти, аккуратно прокрасьте участки изображения, где бы вы хотели добавить больше движения.

    Фотофиниш программно аппаратная система для фиксации порядка пересечения финишной черты участниками соревнований, обеспечивающая получение изображения, которое можно в дальнейшем неоднократно просмотреть. Основным техническим отличием… … Википедия

    Часть аппаратного обеспечения первых бытовых компьютеров, служащая для устранения мерцания (деинтерлейсинга) в кадрах видеосигнала на выходе. Это устройство адаптирует характеристики телевизионного сигнала так, чтобы получить изображение на… … Википедия

    Шторный затвор Затвор фотографический устройство, используемое для перекрытия светового потока, проецируемого объективом на фотоматериал (например, фотоплёнку) или фотоматрицу (в циф … Википедия

    Затвор фотографический устройство, используемое для перекрытия светового потока, проецируемого объективом на фотоматериал (например, фотоплёнку) или фотоматрицу (в цифровой фотографии). Путем открытия затвора на определенное время выдержки… … Википедия

    Затвор фотографический устройство, используемое для перекрытия светового потока, проецируемого объективом на фотоматериал (например, фотоплёнку) или фотоматрицу (в цифровой фотографии). Путем открытия затвора на определенное время выдержки… … Википедия

    Затвор фотографический устройство, используемое для перекрытия светового потока, проецируемого объективом на фотоматериал (например, фотоплёнку) или фотоматрицу (в цифровой фотографии). Путем открытия затвора на определенное время выдержки… … Википедия

    Способ отображения информации о состоянии технологического оборудования и параметрах технологического процесса на мониторе компьютера или операторской панели в системе автоматического управления в промышленности, предусматривающий также… … Википедия

    Commodore 64 Скринсейвер (также хранитель экрана, заставка) компьютерная программа, которая через некоторое время простоя компьютера заменяет статическое изображение динамическим или полностью чёрным. Для мониторов на основе ЭЛТ и плазменных… … Википедия

    Хранитель экрана Commodore 64 Скринсейвер (также хранитель экрана, заставка) компьютерная программа, которая через некоторое время простоя компьютера заменяет статическое изображение динамическим или полностью чёрным. Для мониторов на основе ЭЛТ … Википедия

Переходим к теории

Существует 2 способа уравновесить избражение: статично и динамично.

Статическая или статичная композиция выражает неподвижность, устойчивсть, спокойствие.

Динамическая или динамичная же выражает движение, энергию, ощущение движения, полета, вращения.

Как же заставить двигаться неподвижные предметы?

Одно из правил построения композиции- правило . В таком изображении можно выделить 5 полюсов, притягивающих внимание: центр и 4 угла. Построенное изображение в больших случаях будет уравновешенно, но статично. Что прекрасно, если цель передать спокойствие, безмятежность, устойчивость.


Но, если цель передать движение или возможность движения, или намек на движение и энергию?

Для начала давайте подумаем, какие элементы изображения имеют больший вес (те сильнее притягивают внимание глаз), чем другие.

Большие объекты > маленьких

Яркие > темных

Окрашенные в теплую гамму > окрашенных в холодные цвета

Объемные объекты (3D) > плоских(2D)

Сильно контрастные > слабо контрастных

Изолированные > сплоченных

Правильной формы > неправильной формы

Резкие, четкие > размытых, вне фокуса

Понимание, что сильнее, необходимо, так, например, зная, что светлые элементы притягивают глаз сильнее, чем темные, незначительные детали фона не должны быть ярче главного объекта изображения.

Как и разные элементы имеют разный вес, так и 5 полюсов по-разному привлекают внимание. Нижние углы имеют большую силу. Сила визуального восприятия возрастает слева направо.Почему так? Мы привыкли читать сверху вниз и слева направо, поэтому правый нижний угол будет иметь больший вес, тк в этом положении мы привыкли заканчивать=) А левый верхний соответственно будет иметь наименьшую силу=)

Итак, а что если слегка видоизменить правило трети и слекга сместиться относительно первоначальных линий линий как на диаграмме?

по правилу трети мы видим четыре точки пересечения, но для создания динамизма 2 из них смещены в нижний правый угол.

Чем больше вес объекта и чем выше он расположен, тем больше визуальная энергия изображения.

например, динамическая диагональная композиция

Еще одно правило, уравновешивающее элементы изображения - правило пирамиды. Низ тяжелый и устойчивый. Построенная таким образом композиция будет статичной. Но можно перевернуть эту пирамиду и тогда верх будет тяжелым, но изображение все равно останется уравновешенным, однако, уже динамичным+)

Наличие даигональных линий придает динамизм изображению, в то время как горизонтальные линии остатичивают.

Единственный способ понять разницу-это смотреть и рисовать=)

так что еще немного картинок.



Понравилась статья? Поделитесь ей