Контакты

Кв антенные тюнеры. Согласующие устройства, антенные тюнеры. Конструкция антенного тюнера от RZ3GI

Антенное согласующее устройство (АСУ или антенный тюнер) – неотъемлемая часть радиоточки. Прибор необходим для согласования донорной антенны с настройками подключённой к ней радиостанции или трансивера. Согласующее устройство чаще всего выполняется индивидуальным блоком, размещаемым в общей цепи недалеко от ввода антенного кабеля в рацию (трансивер).

Классификация АСУ

Наиболее востребованными являются следующие АСУ:

  • антенный тюнер с неперестраиваемыми настройками. Предназначен для работы в узком диапазоне частот;
  • согласующее устройство для антенны на дискретных LC-элементах;
  • антенное согласующее устройство, работающее на основе цепей с распределёнными параметрами;
  • тюнер антенны с наличием возможности ручной настройки;
  • тюнер антенны для приёмников с автоматической настройкой.

Купить согласующее устройство любого вида, цена которого находится на приемлемом уровне, можно в компании «РадиоЭксперт».

Почему следует приобретать радиотовары в «РадиоЭксперт»?

Интернет-магазин «РадиоЭксперт» отличается наличием ряда положительных характеристик, которые не всегда свойственны компаниям со схожим видом деятельности.
К основным плюсам следует отнести:

  • компанией ведётся продажа радиотоваров напрямую от производителей. Следует отметить, что поставщики - это всемирно известные компании, являющиеся общепризнанным лидерами в области производства радиотехники. Таким образом, на сайте вы можете купить мощное усиливающее приспособление, тюнер, рацию и другие подобные товары производства не только Россия, но и США, Японии и других стран;
  • купить радиотовары, цена которых находится на низком уровне, можно дистанционно, через Интернет. Ресурсом производится доставка в любую точку России и СНГ;
  • на все товары из прайс-листа предоставляется гарантия;
  • онлайн-магазин оказывает полную информационную поддержку клиентов. Таким образом, если вы хотите недорого заказать радиотовары, но не можете самостоятельно сделать выбор, свяжитесь с консультантами. Сотрудники с готовностью озвучат все эксплуатационные характеристики того или иного товара и его стоимость.

«РадиоЭксперт» – магазин номер один для радиолюбителей. В каталоге на сайте можно найти практически любые радиотовары со всех стран мира. Будем рады видеть вас в числе клиентов!

Прислать эту заметку меня побудила статья в . В ней описывалась конструкция антенного тюнера, собранного по Т-образной схеме обладающая хорошей широкополосностью и исключающая подстройку при изменении частоты в пределах одного диапазона. Такая схема в зависимости от типа антенны и рабочей частоты может подавлять гармоники на 10-15 дБ . Так как конденсаторов переменной емкости от радиоприемника «ВЭФ», как это рекомедовано в , у меня не оказалось, я собрал тюнер по другой схеме и с другими, более распространенными КПЕ. Кроме того, этот тюнер может работать как простейший коммутатор антенн, имеющий еще и эквивалент нагрузки.

Для согласования трансивера с различными антеннами можно с успехом применить простейший ручной тюнер, схема которого показана на рисунке. Он перекрывает диапазон частот от 1,8 до 29 мГц. Мощность, подводимая к тюнеру, зависит от от зазора между пластинами применяемого конденсатора переменной емкости С1 – чем он больше, тем лучше. С зазором 1,5-2 мм тюнер выдерживал мощность до 200 Вт (может и больше – для дальнейших экспериментов мощности моего TRX не хватило). На входе тюнера для измерения КСВ можно включить один из КСВ-метров , хотя при совместной работе тюнера с импортными трансиверами это не обязательно - все они имеют встроенную функцию измерения КСВ (SVR ). Два (или больше) ВЧ разъема типа PL 259 позволяют подключить антенну , выбранную с помощью галетного переключателя S2 «Коммутатор антенн» для работы с трансивером. Этот же переключатель имеет положение «Эквивалент», при котором трансивер может быть подключен к эквиваленту нагрузки сопротивлением 50 Ом. С помощью релейной коммутации можно включить режим «Обход» и антенна или эквивалент (в зависимости от положения коммутатора антенн S2) будут напрямую подсоединены к трансиверу.

В качестве С1 и С2 применяются стандартные КПЕ-2 с возд ушным диэлектриком 2 х 495 пФ от промышленных бытовых приемников. Их секции продернуты через одну пластину. В С 1 задействованы две секции, соединенные параллельно. Он установлен на пластине из оргстекла толщиной 5 мм. В С2 – задействована одна секция.

S 1 – галетный ВЧ переключатель на 6 положений (2Н6П галеты из керамики, их контакты соединены параллельно). S2 - такой же, но на три положения (2Н3П, или на большее число положений в зависимости от количества антенных разъемов).

Катушка L 2 - намотана голым медным проводом d =1 мм (лучше посеребренный) , всего 31 вит ок, намотка с небольшим шагом , внешний диаметр 18 мм , отводы от 9 + 9 + 9 + 4 витка . Катушка L 1 - тоже, но 10 витков. Катушки установлены взаимно-перпендикулярно. L2 можно припаять выводами к контактам галетного переключателя, изогнув катушку полукольцом. Монтаж тюнера проводится короткими толстыми (d =1,5-2 мм) отрезками голого медного провода.

Реле типа ТКЕ52ПД от радиостанции Р-130М. Естественно, оптимальным вариантом является применение более высокочастотных реле, например, типа РЭН33. Напряжение для питания реле получено от простейшего выпрямителя, собранного на трансформаторе ТВК-110Л2 и диодном мосту КЦ402 (КЦ405) или им подобным. Коммутация реле осуществляется тумблером S3 "Обход" типа МТ-1, установленном на лицевой панели тюнера. Лампа La (не обязательна) служит индикатором включения.

Может оказаться, что на низкочастотных диапазонах не хватает емкости С2. Тогда параллельно С2 можно с помощью реле Р3 и тумблера S4 подключать или его вторую секцию или дополнительные конденсаторы (подобрать 50 – 120 пФ - на схеме показано пунктиром).

От ред. - В интернете встречаются подобные схемы, в которых емкость аналога С2 на диапазоне 3,5 мГц достигает 600 пФ. При этом C1 отсутствует, а катушки L1 и L2 - прямые или шаровые вариомы индуктивностью 10 мкГ.

По рекомендации, взятой из публикации , оси КПЕ соединены с ручками управления через отрезки дюритового бензошланга, служащие изоляторами. Для их фиксации использованы водопроводные хомутики d =6 мм.

Тюнер был изготовлен в корпусе от набора «Электроника-Контур-80». Несколько бОльшие размеры корпуса, чем у тюнера, описанного в , оставляют достаточный простор для доработок и модификаций данной схемы. Например, ФНЧ на входе, согласующий симметрирующий трансформатор 1:4 на выходе, вмонтированный КСВ-метр и другие.

Для эффективной работы тюнера не следует забывать о хорошем его заземлении.

Литература:

1. О.Платонов.Антенный тюнер. - Радио, 2009, № 8, с. 58.

2. И.Подгорный. Антенный тюнер. Радиолюбитель, 1994, №2, с. 58.

Иван Блок.

Автоматический антенный тюнер ATU-100 MINI 5х5

Набор предназначен для самостоятельной сборки простого малогабаритного автоматического антенного тюнера ATU-100 MINI 5x5 разработанного Дэвидом N7DDC, который благодаря своим небольшим габаритам и простоте может быть встроен в существующие конструкции с выходной мощностью до 100 Ватт. Ознакомиться с этой и многими другими не менее интересными конструкциями можно на сайте Дэвида www.sdr-deluxe.com
Размеры печатной платы 100х62 мм. На ней установлены микропроцессор PIC16F1938 , пять индуктивностей, пять высоковольтных конденсаторов, реле для их переключения, транзисторы управления реле и схема измерения прямой и обратной мощности типа "тандем-матч". Используется обычная "Г-образная" схема согласования. Конструкция тюнера проста и технологична, собранное без ошибок устройство запускается сразу, не требует сложной настройки или специальной калибровки.

Для старта процесса согласования достаточно нажать на кнопку, подключенную к соответствующему разъему или замкнуть вывод с помощью транзистора, если есть возможность управлять тюнером из трансивера. Уникальный умный алгоритм, используемый в устройстве позволяет в большинстве случаев произвести настройку за 0.1 - 0.5 секунд, а максимальное время, потраченное на поиск наилучшей комбинации, не превышает двух секунд. Таким образом, нет необходимости в каких-то дополнительных мерах для ускорения работы, что обуславливает предельную простоту и надежность устройства.
Тюнер можно использовать и как внешнее устройство в отдельном корпусе, в том числе удаленно для настройки непосредственно у антенны.
Устройство позволяет подключать к разъему для программирования процессора стандартный двухстрочный дисплей с шиной управления I2C , на котором отображается наиболее важная информация (выходная мощность, КСВ и установленные в процессе согласования номиналы емкости и индуктивности). Предусмотрен вариант упрощенной трёхуровневой светодиодной индикации результата согласования антенны (КСВ<1.1, КСВ<1.5 и КСВ>1.5). Это может быть полезным при использовании тюнера в составе самодельного усилителя или для контроля тюнера, расположенного удаленно.



Начал сборку:)






Основные характеристики автотюнера ATU-100 MINI:
Диапазон допустимых питающих напряжений: 10 - 15 Вольт постоянного тока
Максимальный ток потребления: 300 мА
Максимальная рабочая проходная мощность: 100 Ватт
Максимально возможная измеренная мощность: 150 Ватт
Минимальная мощность, необходимая для начала настройки: 1 Ватт
Минимально возможная измеренная мощность: 0,1 Ватт
Шаг измерения при мощности до 10 Ватт: 0,1 Ватт
Шаг измерения при мощности выше 10 Ватт: 1 Ватт
Точность измерения мощности: 10%
Максимальная установленная индуктивность: 4 мкГн
Минимальный шаг установки индуктивности: 0,1 мкГн
Максимальная установленная емкость: 400 пФ
Минимальный шаг установки емкости: 10 пФ

Как видно из характеристик, сравнительно небольшие устанавливаемые индуктивность и емкость обуславливают некий компромисс. Данный тюнер не сможет согласовывать большие рассогласования на частотах ниже 7 МГц, для этого придется использовать широкополосные трансформаторы для приведения сопротивления в более или менее близкое к 50 Ом значение, после чего тюнер донастроит рассогласование в небольших пределах. От 7 МГц и выше он способен согласовать практически любую «верёвку». Схема тюнера приведена и на рисунке ниже:



В версии прошивки 2.2 а лгоритм работы которой заметно эффективнее алгоритма предыдущих версий как в ручном, так и автоматическом режиме. Так к примеру даже на 3,6 МГц нагрузку в 100 Ом (КСВ=2) приводит практически к 1, в то время как с предыдущими версиями лишь немного уменьшал КСВ примерно до 1,5. Всё также р еализована возможность производить настройку при любом типе выходного сигнала трансивера, теперь не нужно подавать именно непрерывную несущую от трансивера для настройки. Можно «алёкать» в микрофон, дуть в него, давать серию точек или тире или же просто работать как обычно, тюнер будет ждать подходящего сигнала и будет производить настройку по мере его поступления. То если у вас нет возможности подключиться к трансиверу, чтобы он по запросу выдавал несущую (привет владельцам Yaesu), теперь это совершенно не проблема. Можно и не подключаться. Чтобы этот режим нормально работал в SSB пришлось, поднять порог минимальной мощности для настройки до 5 Ватт.
В виду того, что в прошивке 2.1 актуальны 3 кнопки управления - кроме основной кнопки "TUNE" (она же при коротком нажатии кнопка сброса RESET) теперь добавлены ещё две кнопки которые можно вынести на переднюю панель, это кнопка "AUTO" (режим автоматической настройки тюнера) и "BYPASS" (Обход).

Подключение светодиодов упрощенной трёхуровневой светодиодной индикации результата согласования антенны (КСВ<1.1, КСВ<1.5 и КСВ>1.5) и дополнительных кнопок нужно производить по приведённой ниже схеме >>> . На плате эти контакты не выведены, т.е. подпаиваться нужно будет непосредственно на выводы микропроцессора тонкими гибкими проводами МГТФ (входят в состав набора). Блокировочные конденсаторы кнопок С1, С2 типоразмера 1206 лучше всего припаять снизу платы непосредственно к выводам микропроцессора.


Небольшое видео работы тюнера 5х5



Обсуждение конструкции на форуме >>>

В комплекте набора (см. перечень ниже) для самостоятельной сборки есть качественная двухслойная печатная плата с металлизацией отверстий, маской и маркировкой и все радиокомпоненты, устанавливаемые на неё: «прошитый» микропроцессор PIC16F1938-I/SP с цанговой панелькой DIP28 под него (версия прошивки 3.0 ), резисторы, конденсаторы, диоды, транзисторы, ферритовые кольца и бинокулярный сердечник, обмоточные провода, разъёмы, реле. Печатная плата рассчитана на установки малогабаритных угловых разъёмов SMA, в некоторых случаях может оказаться удобнее сразу установить стандартные UHF антенные разъемы ВЧ (UHF) SO239 (PL259), гнездо на корпус или угловой SMA для пайки на плату - при заказе набора можно выбрать желаемый тип антенных разъёмов, цена останется неизменной. Также можно выбрать (заказать) цвет индикатора ЖКИ: серые знаки на жёлто-зелёном фоне или белые знаки на синем фоне.

Набор тюнера 5х5 предлагается в нескольких вариантах комплектации:
1. Двухсторонняя печатная плата с металлизацией отверстий, маской и маркировкой (100х62 мм) - 140 грн.
2. Двухсторонняя печатная плата с металлизацией отверстий, маской и маркировкой + полный комплект деталей (включая ЖКИ 1602 PCF8574 IIC/I2C с подсветкой), устанавливаемых на неё - 1020 грн.
3. Собранная и проверенная плата тюнера с ЖКИ 1602 PCF8574 IIC/I2C с подсветкой - 1400 грн.

По умолчанию набор укомплектован: разъёмами SMA для монтажа в плату, 2х16 ЖКИ дисплеем с серыми знаками и желто-зелёной подсветкой.

При необходимости можно заказать переходники:
SMA/BNC - 50 грн./шт.

SMA/SO239 - 80 грн./шт.

Состав набора для сборки тюнера можно увидеть




Подключение дисплея к плате тюнера:



Обратите пожалуйста внимание! Контрастность изображения ЖКИ дисплея можно отрегулировать самостоятельно. Для этого на плате адаптера I2C установлен подстроечный резистор (на фото квадратный синего цвета). Для уменьшения энергопотребления, например в полевых условиях, подсветку дисплея можно отключить - снять джампер на плате адаптера. Как вариант, включение/отключение подсветки можно организовать с помощью тумблера, при этом достаточно подключить его к штыревым контактам на плат адаптера I2C вместо джампера:)

Подключение двухстрочных дисплеев 1602 с адаптером I2C выполняется 4-х жильным шлейфом. Контакты на плате тюнера соединяются с контактами на плате адаптера I2C в следующей комбинации (контакт платы тюнера - контакт платы переходника):

MCLR - не используется
VCC - VCC
GND - GND
DAT - SDA
CLK - SCL

БЕЛЫЙ OLED ДИСПЛЕЙ


СИНИЙ OLED ДИСПЛЕЙ


Подключение двухстрочных OLED дисплеев выполняется 4-х жильным шлейфом. Контакты на плате тюнера соединяются с контактами на плате дисплея в следующей комбинации (контакт платы тюнера - контакт платы дисплея):

MCLR - не используется
VCC - VCC
GND - GND
DAT - SDA
CLK - SCK

СИНЕ-ЖЁЛТЫЙ OLED КВАДРАТНЫЙ ДИСПЛЕЙ (ещё есть БЕЛЫЕ и СИНИЕ )


Подключение квадратных:) OLED дисплеев выполняется 4-х жильным шлейфом. Контакты на плате тюнера соединяются с контактами на плате дисплея в следующей комбинации (контакт платы тюнера - контакт платы дисплея):

MCLR - не используется
VCC - VCC
GND - GND
DAT - SDA
CLK - SCL

Автоматический антенный тюнер ATU-100 MINI 7х7

Набор предназначен для самостоятельной сборки простого малогабаритного автоматического антенного тюнера ATU-100 MINI 7x7 разработанного Дэвидом N7DDC, который благодаря своим небольшим габаритам и простоте может быть встроен в существующие конструкции с выходной мощностью до 100 Ватт.
Размеры печатной платы 120х62 мм. На ней установлены микропроцессор PIC16F1938, семь индуктивностей, семьь высоковольтных конденсаторов, реле для их переключения, транзисторы управления реле и схема измерения прямой и обратной мощности типа "тандем-матч". Используется обычная "Г-образная" схема согласования. Конструкция тюнера проста и технологична, собранное без ошибок устройство запускается сразу, не требует сложной настройки или специальной калибровки.

Всё сказанное выше касательно тюнера 5х5 справедливо для этого тюнера:)

Схема тюнера:


Подключение дополнительных кнопок "Авто" и "Обход", при необходимости, выполняется к пятачкам B1 и B2 расположенным на обратной стороне платы.






Небольшое видео работы тюнера 7х7

Набор тюнера 7х7 предлагается в нескольких вариантах комплектации:
1. Двухсторонняя печатная плата с металлизацией отверстий, маской и маркировкой (120х62 мм) - 165 грн.
2. Двухсторонняя печатная плата с металлизацией отверстий, маской и маркировкой + полный комплект деталей (включая ЖКИ 1602 PCF8574 IIC/I2C с подсветкой), устанавливаемых на неё - 1150 грн.
3. Собранная и проверенная плата тюнера с ЖКИ 1602 PCF8574 IIC/I2C с подсветкой - 1550 грн.
Краткое описание тюнера прилагается.
4. При заказе с OLED дисплеем удорожание - 100 грн.

По умолчанию набор укомплектован: разъёмами SO для монтажа на панель, 2х16 ЖКИ дисплеем с серыми знаками и желто-зелёной подсветкой.

Состав набора для сборки тюнера ATU-100 ext 7x7 можно увидеть

Краткое описание устройства от автора конструкции (для прошивки 3.0 )

Актуальная версия прошивки 3.0

При заказе автоматического антенного тюнера просьба указывать:
1.Желаемый тип антенных разъёмов: SMA, BNC или SO239 (PL259)
2. Желаемый индикатор: ЖКИ дисплей с серыми знаками на жёлто-зелёном фоне или белыми знаками на синем фоне.
3. OLED дисплей с белыми/синими знаками прямоугольный (индикация в две строки) или квадратный (индикация в четыре строки).

Наборы для сборки и собранные платы комплектую высоковольтными 1...2 кВ конденсаторами типоразмера 1206 с нулевым ТКЕ - диэлектрик NP0.
Эти конденсаторы прошли проверку под нагрузкой, так сказать:) Проверка трёх вариантов конденсаторов сделана по моей просьбе Карпелянским Володей (R2AJI). Видео лабораторной работы выложена у него на канале HAM Radio Channel, вот это видео:

Заказы можно оформлять через форму или по телефону указанному в разделе

Всем мирного неба, удачи, добра, 73!


В среде радиолюбителей-коротковолновиков популярны антенные тюнеры фирмы MFJ различных модификаций, в том числе на мощность 1...3 кВт. Автору статьи не раз приходилось видеть "внутренности" тюнеров этой фирмы, вышедших из строя. Возможно, что при более "деликатном обращении" подобных плачевных последствий и удаётся избежать, но и это не является фактором высокой надёжности тюнера. Также немаловажную роль играет их стоимость...

В настоящее время на радиорынках СНГ, в том числе и на интернет-рынках появилось множество радиокомпонентов от военной техники СССР, снятой с вооружения, но вполне пригодных для радиолюбительских конструкций.

Изучив информацию по ручным Т-тюнерам MFJ и различным "самодельным" устройствам, автор собрал тюнер на максимальную проходную мощность 3 кВт в радиолюбительских диапазонах 1,8...30 МГц, применив соответствующие компоненты.

Устройство представляет собой законченную конструкцию и позволяет:

1. Подключать к усилителю мощности (УМ) внешнюю нагрузку 50 Ом через измеритель КСВ и проходной мощности.

2. Коммутировать две антенны через измеритель КСВ и проходной мощности напрямую без тюнера.

3. Подключать одну антенну к тюнеру через измеритель КСВ и проходной мощности и согласовать нагрузку, эквивалентную сопротивлению 10...1000 Ом в диапазоне 1,8....30 МГц.

4. Измерять КСВ в подключённой антенно-фидерной системе с минимальной мощностью 50 Вт на нагрузке 50 Ом.

5. Измерять мощность проходящего сигнала в трёх интервалах: 0,3 кВт, 1,5 кВт, 3 кВт.

6. Подавлять внеполосные излучения (не менее 10 дБ).

Принципиальная схема антенного тюнера показана на рис. 1. Сигнал передатчика подаётся на разъём XW1 и через первичную обмотку трансформатора Т1 измерителя КСВ и проходной мощности поступает на переключатель выбора направления передачи мощности - SA2. В положении 1 переключателя SA2 сигнал поступает на разъём XW2, к которому подключают безындуктивную нагрузку с сопротивлением 50 Ом на соответствующую мощность. Этот режим необходим для настройки лампового усилителя мощности, чтобы исключить пробой конденсаторов переменной ёмкости (КПЕ) П-контура. Часто бывает, что радиолюбители в П-контуре ламповых усилителей большой мощности применяют конденсаторы с довольнотаки малыми зазорами, например, трёх-, пятисекционные КПЕ с ёмкостью секции 12/495 или 17/500 в лучшем случае.

Рис. 1. Принципиальная схема антенного тюнера

В положениях 2 и 3 переключателя SA2 сигнал передачи может поступать на разъёмы XW3 и XW4 соответственно, к которым подключают антенно-фидерные устройства с волновым сопротивлением 50 Ом. В положении 4 переключателя SA2 сигнал передачи поступит на тюнер и далее на разъём XW5, к которому может быть подключено антеннофидерное устройство с сопротивлением 10...1000 Ом.

Тюнер выполнен по Т-образной схеме и состоит из двух КПЕ С6 и С7, катушки с переменной индуктивностью L1 и конденсаторов С8, С9, подключаемых автоматически выключателями SA3 и SA4 при вращении роторов КПЕ С6 и С7.

При измерении проходной мощности ВЧ-сигнал снимается с вторичной обмотки трансформатора Т1 через цепь VD1C3R3 и через контакты 1, 2 или 3 переключателя SA1 и соответствующие добавочные резисторы R4-R8 поступает на измерительный прибор РА1.

При измерении КСВ сигнал снимается с вторичной обмотки трансформатора Т1, детектируется цепями VD1C3R3 и VD2C4R3, через контакты 4 или 5 переключателя SA1 с движка переменного резистора R3 поступает на прибор РА1. Цепь VD1C3R3 - детектор прямой волны, цепь VD2C4R3 - детектор отражённой волны. Переменным резистором R3 устанавливают положение стрелки прибора РА1 на конечное деление шкалы в положении 4 переключателя SА1. В положении 5 переключателя SА1 производят считывание показаний КСВ. Измерительный прибор РА1 имеет две шкалы: шкалу проходной мощности и шкалу отсчёта КСВ.

Основные узлы в конструкции применены от согласующе-симметрирующего устройства радиостанции Р-140. Измеренная ёмкость конденсаторов С6 и С7 - 26...206 и 26...209 пФ соответственно. Толщина дюралюминиевых пластин ротора и статора КПЕ - 3,7 мм. Зазор между пластинами ротора и статора при введённом роторе - 7 мм. Роторы этих КПЕ вращаются без ограничений на 360 о (рис. 2). При выборе КПЕ другого типа необходимо обратить внимание на толщину пластин, так как тонкие пластины при сигнале большой мощности могут изгибаться, тем самым способствуя ВЧ-пробою. У применённых КПЕ имеются мощные щёточные коммутаторы из латуни. С их помощью подключаются дополнительные конденсаторы С8 и С9 - К15У-1 на номинальное напряжение 3,5 кВ и реактивную мощность 8 кВАр.

Рис. 2. Роторы КПЕ

Цилиндрический вариометр L1 - также от радиостанции Р-140. Его катушка выполнена медной шиной 10x1,2 мм и содержит 22 витка с шагом 6 мм. Вариометр можно применить и от другой техники, но не с худшими данными.

Переключатель выбора подключаемой нагрузки SA2 - щёточного типа, керамический с площадью контакта не менее 7 мм 2 . Переключатели со сферической формой контакта не годятся ввиду малой площади контакта. Переключатель SA1 - ПГК 5П2Н или другой подходящего типа на радиокерамике.

Трансформатор Т1 намотан на магни-топроводе типоразмера К20х10х5мм из феррита 50ВЧ. Первичная обмотка Т1 представляет собой медный проводник диаметром 3 мм и длиной 40 мм, на который надета фторопластовая трубка. Этот проводник проходит сквозь ферритовое кольцо с вторичной обмоткой, которая выполнена двумя параллельно идущими многожильными проводами, взятыми из монтажного шлейфа. Провода в ПХВ-изоляции содержат две жилы из семи проводников медного лужёного провода диаметром 0,15 мм. Эта обмотка содержит десять витков, намотанных равномерно по кольцу. Кольцо предварительно обмотано лентой из фторопласта или лакоткани. Средняя точка вторичной обмотки получается соединением конца одного провода обмотки с началом второго.

Автор давно использует такой тип вторичной обмотки при изготовлении КСВ-метров до 50 МГц, зарекомендовавший себя как наиболее оптимальный и надёжный. Следует иметь в виду, что верхний вывод конденсатора С1 подключён к проводнику первичной обмотки Т1 после него (не со стороны подключения входного разъёма!). Шина общего провода измерителя выполнена из медного провода диаметром 3 мм. Одним концом эта шина подключена к корпусу входного разъёма, а вторым - к оплётке кабеля, идущего на переключатель SA2. Центральный провод этого кабеля подпаян к проводнику первичной обмотки Т1 после него.

Конденсатор С1 - любой подходящий с воздушным диэлектриком, С2 - КСО-1, КТК, КДК на номинальное напряжение не менее 250 В. Резисторы R1, R2, R6, R8 - МЛТ-2. Переменный резистор R3 - СП3-9а, СП3-4а или СП группы В. Подстроечные резисторы R4, R5, R7 - СП3-9а, СП4-1 группы А. Конденсаторы С3, С4 составлены из двух конденсаторов КДК ёмкостью 6800 пФ, включённых параллельно, С5 - КДК. Все конденсаторы - на номинальное напряжение 250 В. Диоды VD1, VD2 можно заменить подобранными диодами Д9Ж. Прибор РА1 - М24 с током полного отклонения стрелки 200 мкА. Можно применить другой на ток от 50 до 300 мкА с соответствующей коррекцией добавочных резисторов. От чувствительности прибора зависит минимальная мощность контроля КСВ. В авторском варианте - это 50 Вт. Выбор такой мощности сделан из соображений комфортной работы тюнера в момент согласования с большим сопротивлением нагрузки.

Все ВЧ-разъёмы - СР-50-165Ф. Для подключения эквивалента нагрузки 50 Ом применён 50-омный разъём другого типа, чтобы не путать с другими направлениями.

Тюнер смонтирован в корпусе размерами 480x320x300 мм от генератора Г3-33. К корпусу снизу привинчены резиновые ножки, в задней стенке вырезаны отверстия под разъёмы. Также на задней стенке корпуса установлена клемма "земля".

Лицевая панель тюнера и шасси изготовлены из стали толщиной 1,5 мм и представляют собой цельную жёсткую конструкцию. Они соединены посредством полуавтоматической сварки (КЭМП), но можно применить заклёпочно-винтовой способ соединений. Важно, чтобы конструкция была достаточно жёсткой, поскольку применяемые радиодетали имеют сравнительно большие размеры и массу. Панель крепления ВЧ-разъёмов размерами 442x75x4 мм изготовлена из дюралюминия и закреплена на шасси сзади. Разъёмы крепятся латунными винтами и гайками М3. Монтажные лепестки из лужёной латуни подходящего размера крепят под латунными гайками. В конструкции все площадки под винты, гайки, лепестки и разъёмы перед монтажом хорошо зачищают. Передняя панель и шасси тюнера окрашены эмалью ПФ-115 серого цвета. Все надписи сделаны переводным шрифтом (рис. 3).

Рис. 3. Передняя панель тюнера

В боковых стенках шасси в местах крепления КПЕ и вариометра вырезаны прямоугольные окна для уменьшения ёмкости монтажа. Узлы измерительного прибора, измерителя КСВ и проходной мощности закрыты коробчатыми экранами. Узел измерителя КСВ и проходной мощности дополнительно закрыт Г-образным экраном из дюралюминия.

Компоновка узлов тюнера показана на фото (рис. 4).

Рис. 4. Компоновка узлов тюнера

При монтаже КПЕ следует учесть, что они изолированы от шасси. Металлические оси управления КПЕ соединяют с осями роторов КПЕ через изоляционные высо-
ковольтные муфты. Также на оси управления крепят диски диаметром 100 мм из металла или пластика для шкал. Шкалы изготавливают на принтере или рисуют от руки на плотной белой бумаге. Рабочее поле шкал КПЕ - 360 о. В лицевой панели тюнера под эти шкалы по месту вырезаны отверстия. Отверстия закрыты пластинами из оргстекла толщиной 1 мм и снабжены визирами по центру. Шкала прибора РА1 изготовлена таким же способом.

Конденсаторы С8 и С9 монтируют на задних стенках корпусов С6 и С7 соответственно. При установке вариометра обращают внимание, что ось управления вариометра соединена с его подвижными контактами. Поэтому токосъёмник подвижных контактов соединяют с ближайшим выводом катушки вариометра и подключают к общему проводу - пластине крепления ВЧ-разъёмов. В качестве шкального устройства вариометра использован модернизированный шкальный механизм от радиостанции 10РТ-26. Шкалу вариометра также изготавливают вышеуказанным способом.

Монтаж тюнера выполнен коаксиальным кабелем РК50-9-12, рассчитанным на проходную мощность более 3 кВт при КСВ=1. Измерительный узел РА1С5R3 подключён экранированными НЧ-проводами. Остальные соединения выполнены лужёной медной шиной 10x1 мм и трубкой диаметром 5 мм по кратчайшему пути. Детали С1-С4, R1, R2, VD1, VD2 смонтированы навесным способом на керамической пластине c монтажными лепестками. Как сказано выше, конденсаторы С3 и С4 составлены из пар конденсаторов ёмкостью 6800 пФ. Одни установлены на пластине, а вторые - на переключателе SА1. Подстроечные резисторы R4, R5, R7 смонтированы на боковой панели шасси для возможности регулирования извне (рис. 5). Там же сделано отверстие для регулировки конденсатора С1. Фиксатор положений переключателя SА1 необходимо несколько ослабить для более мягкого переключения. Ось переключателя SА1 выведена на переднюю панель тюнера через ось с двумя пружинными карданами. Переменный резистор R3 также установлен на лицевой панели. Элементы R3, PA1, C5 закрыты коробчатым экраном. Диоды VD1, VD2 должны быть подобраны в пару. Упрощённый подбор - по измерению прямого сопротивления цифровым измерителем сопротивлений. Для более точного подбора диодов можно воспользоваться известными методиками из литературы или Интернета.

Рис. 5. Монтаж резисторов

Все работы по налаживанию тюнера выполняются при строгом соблюдении техники электробезопасности! Настройка производится на диапазоне 14 МГц. На остальных диапазонах результаты получаются вполне приемлемые, и никаких дополнительных настроек не требуется.

Вначале проверяют правильность монтажа всего устройства. Убедившись, что всё в порядке, устанавливают переключатель SA2 в положение 1 ("50Е") и подключают к разъёму XW2 безындуктивное сопротивление 50 Ом соответствующей мощности. Подключают выход трансивера или усилителя мощности к разъёму XW1. Движок переменного резистора R3 устанавливают в крайнее правое положение (подвижный контакт соединяют с общим проводом). Переключатель SА1 устанавливают в положение 4 ("F", прямая волна). Включают трансивер в режим передачи, настраивают его П-контур на нагрузку 50 Ом и устанавливают выходную мощность 50 Вт. Если у трансивера транзисторный выход, то он уже настроен на 50 Ом. Переменным резистором R3 устанавливают стрелку прибора РА1 на середину шкалы. Переводят SА1 в положение 5 ("R", отражённая волна) и диэлектрической отвёрткой вращают ротор конденсатора С1. Стрелка прибора РА1 идёт к нулю. Возвращают SА1 в положение "F" и резистором R3 устанавливают стрелку РА1 на конечное значение шкалы. Переключают SА1 в положение "R" и конденсатором С1 устанавливают стрелку РА1 на нулевую отметку шкалы. Повторяют эту операцию и, если нужно, корректируют настройку. Эта настройка будет соответствовать КСВ, равному единице. Шкала КСВ-метра градуируется согласно расчётам по формуле

КСВ = (1+U отр)/(1-U отр).

Вместо 1 подставляют конечное значение шкалы, вместо U - показания в режиме отражённой волны. Полученное значение будет значением КСВ. Например, вся шкала имеет 100 делений. Показание отражённой волны - десять делений. Подставляем эти значения в формулу и делаем расчёт:

КСВ = (100+10)/(100-10) = 1,22.

Полученное значение и будет соответствовать КСВ в данной точке шкалы. Таким способом можно рассчитать всю шкалу КСВ-метра. Варьируя цифрами в этой формуле, можно отградуировать шкалу в желаемых значениях.

Далее настраиваем измеритель проходной мощности, который имеет три кратных предела измерения: 0,3 кВт, 1,5 кВт и 3 кВт. Для настройки понадобится ВЧ-вольтметр с пределом измерения напряжения 400 В. Для этих целей подойдут вольтметры, имеющие в комплекте ВЧ-делители напряжения. Почему до 400 В? Потому, что при мощности 3 кВт на нагрузке 50 Ом будет ВЧ-напряжение 387 В, при мощности 1,5 кВт - 274 В, при 0,3 кВт - 123 В. Эти значения получены расчётом по формуле

По этой же формуле определяются промежуточные значения шкалы измерителя проходной мощности. Следует отметить, что шкала мощности нелинейна, и использовать линейную шкалу прибора РА1 напрямую для отсчёта мощности не удастся.

В режиме измерителя проходной мощности движок переменного резистора R3 устанавливают в нулевое положение. Переводят переключатель SА1 в положение 1 (0,3 кВт), уровень передачи на нуле. Подстроечные резисторы R4, R5, R7 устанавливают в положение максимального сопротивления. Плавно подают входной сигнал и контролируют ВЧ-напряжение на нагрузке 50 Ом. При достижении напряжения 123 В подстроечным резистором R4 устанавливают стрелку прибора РА1 на конечное значение шкалы. Это положение будет соответствовать проходной мощности 0,3 кВт. Аналогичным способом настраивают измеритель в других положениях SА1 в соответствии с ВЧ-напряжениями, значения которых приведены выше. Первоначально добавочные резисторы R6 и R8 имеют сопротивление 200 кОм и 470 кОм соответственно. При настройке, возможно, придётся их подобрать. Они обеспечивают плавность регулировки подстроечными резисторами R5, R7.

Промежуточные значения мощности получают из формулы. Много значений создавать вряд ли следует. Достаточно, например, оцифровать такие: 100 Вт, 200 Вт, 250 Вт, 300 Вт. Множитель даст: 0,5 кВт, 1 кВт, 1,25 кВт, 1,5 кВт или 1 кВт, 2 кВт, 2,5 кВт, 3 кВт.

Подключают к тюнеру заземление (клемма X1), сопротивление нагрузки 50 Ом (разъём XW2), выход трансивера/усилителя (разъём XW1) и согласуемую антенну (к разъёму XW5).

Переводят переключатель SА2 в положение 4 "TUNER". Включают трансивер в режиме приёма и вращают ручку настройки вариометра L1 до получения максимального шума эфира. Устанавливают мощность передачи порядка 50 Вт и настройкой конденсаторов С6 и С7 добиваются минимума КСВ. На практике лучше перестраивать конденсатор С6 с небольшим шагом, затем производить точную подстройку на минимум КСВ конденсатором С7. Если необходимо, подстраивают катушку L1, но это в последнюю очередь. Процедура повторяется до достижения минимального КСВ. Когда он получен, можно увеличивать выходную мощность передатчика.

Следует иметь в виду, что минимальный КСВ можно получить в разной комбинации положений ручек тюнера.

По достижении минимума КСВ следует проверить мощность, отдаваемую передатчиком, и убедиться в том, что его система ALC не уменьшила её значительно. Если это всё же произошло, следует искать минимальный КСВ при другом положении вариометра. Чтобы каждый раз не искать точки настройки тюнера, полезно составить таблицу положения ручек настройки по участкам диапазонов.

Необходимо помнить, что настройку тюнера следует производить на мощности менее 100 Вт! Мощность увеличивать только после настройки тюнера и не использовать режим передачи длительное время при высоком КСВ.

Некоторые напоминания. Если применяется фидер питания антенны длиной, кратной нечётному числу 1/4λ (с учётом коэффициента укорочения), то фидер превращается в высокоомный трансформатор. Если длина фидера кратна чётному числу 1/4λ, то имеем повторитель входного сопротивления антенны. То есть к тюнеру будет подведено входное сопротивление антенны. Это следует учитывать при постройке как однодиапазонных, так и многодиапазонных антенн, чтобы получить их максимальную эффективность.


Дата публикации: 02.07.2018

Мнения читателей
  • сергей / 10.12.2018 - 10:54
    Приветствую! где бы заказать сиё?

Типичный антенный тюнер представляет собой два переменных конденсатора и переменную катушку индуктивности. Звучит как что-то, что не сложно сделать самому. Давайте выясним, так ли это, и что в итоге получится по деньгам. Чтобы описанные далее шаги мог повторить любой желающий, было решено использовать исключительно компоненты, которые свободно и большом количестве продаются онлайн.

Вот эти компоненты и где они были куплены:

  • Переменные конденсаторы 22-360 пФ на 1 кВт — 2 шт, 74.40$;
  • Эмалированная проволока диаметром 1.5 мм — 1 шт, 7.65$;
  • Галетный переключатель на 12 позиций — 1 шт, 5.2$
  • Ручка для галетного переключателя — 1 шт, 0.85$
  • Разъемы SO-239 на панель — 2 шт, 2.76$
  • Коннектор для подключения двух проводов — 1 шт, 1$;
  • Металлический корпус 165 x 127 x 75 мм — 1 шт, 12.25$;

Цена конденсаторов включает доставку. Приехали они очень быстро, где-то за неделю или около того. Ко всему перечисленному стоит добавить немного нейлоновых стяжек, болтов, гаек и стоек M3, а также парочку коротких проводов. Они эффективно ничего не стоят.

Когда на руках есть все компоненты, задача — соединить их по уже знакомой нам T-образной схеме, только вместо антенны будут разъемы для ее подключения:

Вот как выглядит получившийся у меня тюнер, вид со снятой крышкой:

Должен признать, что переплетающиеся отрезки проволоки между галетным переключателем и катушкой выглядят не очень элегантно. Можно было бы достичь более удачного расположения компонентов, используя широкую сторону корпуса в качестве лицевой. Но мне что-то не захотелось сверлить отверстие для галетника свозь толстую колонну на этой стороне (см фото), и в итоге компоненты я разместил, как разместил.

Катушка была намотана на каркасе диаметром 45 мм и длиной 60 мм. У меня получилось 29 не очень ровных витков. Измеренная индуктивность катушки составила 25 мкГн. Каркас катушки был напечатан на 3D-принтере пластиком PLA. Также была напечатана небольшая «скамеечка», которая выполняет две функции. Во-первых, она позволяет закрепить катушку без использования клея и сверления отверстий в дне корпуса. Во-вторых, с ее помощью конденсаторы дополнительно придавливаются ко дну корпуса. Они отлично держатся и без «скамеечки», но мне что-то захотелось перестраховаться. Исходники обеих моделей для OpenSCAD вместе с файлами STL вы найдете в этом архиве .

Если у вас нет 3D-принтера или знакомого с 3D-принтером, это не страшно. Точные размеры катушки и ее индуктивность не очень важны. Вы можете намотать проволоку на кусок пластиковой бутылки, толстой трубы ПВХ или чего-то такого. Толщина и длина каркаса могут спокойно составлять ±10мм от тех, что использовал я. Число витков также не критично. В антенных тюнерах используется индуктивность где-то от 14 мкГн (в MFJ-971, согласно показаниям моего LRC-метра) до 37 мкГн (в MFJ-949E, согласно информации из сети). Вы наверняка попадете в эти границы. «Скамеечка», как видно из описания ее функций, не является обязательным элементом тюнера. Катушку можно закрепить в корпусе любым удобным вам способом.

Тюнер был протестирован на той же антенне «длинный провод» , на которой я тестировал MFJ-971. В диапазонах 15, 17, 20, 40 и 80 метров все настраивается превосходно. В диапазонах 10, 12 и 30 метров КСВ не желает опускаться ниже 3. Это можно объяснить тем фактом, что при том же числе отводов я использовал большую индуктивность, чем у MFJ-971. Соответственно, в моем тюнере индуктивность подбирается с бо льшим шагом. То есть, для данных диапазонов не удается точно подобрать необходимую индуктивность. Зато оказалось, что в отличие от MFJ-971, мой тюнер способен настроить 23 метра провода на диапазон 160 метров с КСВ 2.8.

При желании можно поэкспериментировать с разными индуктивностями и положением отводов. Или заменить галетный переключатель на аналогичный, но имеющий 24 положения (есть на eBay). Однако я решил не инвестировать время во все это. Во-первых, на 10 и 12 метрах сейчас все равно нет прохождения, а 30 метров мне не так уж и сильно нужны. Во-вторых, можно предусмотреть несколько внешних трансформаторов и использовать тот или иной в зависимости от ситуации. Например, в MFJ-971 есть встроенный балун 1:4. Думаю, моему тюнеру такой тоже не помешает. Но это уже тема для другого поста. Наконец, в-третьих, никто не отменял возможность подкорректировать размеры антенны под конкретный тюнер.

Для проведения тестовых радиосвязей были выбраны диапазоны 20, 40 и 80 метров, как наиболее популярные. Передача велась в режимах SSB и FT8 с мощностью 100 Вт и 40 Вт соответственно. Корреспонденты давали хорошие рапорты, вполне обычные для данной антенны.

По деньгам вышло 104.36$ плюс пара свободных вечеров. Официальная цена MFJ-971 составляет 139.95$, но в российских интернет-магазинах вы найдете его где-то за 163$. Таким образом, проект вышел экономически выгодным. При этом 70% стоимости составили переменные конденсаторы. Их можно найти дешевле на доске объявлений qrz.ru , извлечь из старой радиотехники или даже изготовить самостоятельно .

Как всегда, если после прочтения поста у вас остались какие-то вопросы, или же вам есть чем его дополнить, не стесняйтесь оставлять комментарии.



Понравилась статья? Поделитесь ей