Контакты

Спектральная плотность мощности. А) Белый шум

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

Ниже приводится краткое описание некоторых сигналов и опре­деляются их спектральные плотности. При определении спектраль­ных плотностей сигналов, удовлетворяющих условию абсолютной интегрируемости, пользуемся непосредственно формулой (4.41).

Спектральные плотности ряда сигналов приведены в табл. 4.2.

1) Импульс прямоугольной формы (табл. 4.2, поз. 4). Колебание, изобра­женное на рис. (4.28, а), можно записать в виде

Его спектральная плотность

График спектральной плотности (рис. 4.28, а) построен на основе прове­данного ранее анализа спектра периодической последовательности однополярных, прямоугольных импульсов (4.14). Как видно из (рис. 4.28, б), функция обра­щается в нуль при значениях аргумента = n , где п - 1, 2, 3, ... - лю­бое целое число. При этом угловые частоты равны = .

Рис. 4.28. Импульс прямоугольной формы (а) и его спектральная плотность (б)

Спектральная плотность импульса при численно равна его площади, т.еG (0)=A . Это положение справедливо для импульса s (t ) произвольной формы. Действительно, полагая в общем выражении (4.41) = 0, получим

т. е. площадь импульса s (t ).

Таблица 4.3.

Сигнал s (t )

Спектральная плотность

При растягивании импульса расстояние между нулями функциисокращается, т. е. происходитсжатие спектра. Значение при этом возра­стает. Наоборот, при сжатии импульса происходит расширение его спектра а значение уменьшается. На (рис. 4.29, а, б) приведены графики амплитудного и фазового испектров прямоугольного импульса.

Рис. 4.29. Графики амплитудного (а) Рис. 4.30. Импульс прямоугольной формы, и фазового (б) спектров сдвинутый на время

При сдвиге импульса вправо (за­паздывание) на время (рис. 4.30) фазовый спектр изменяется на величи­ну, определяемую аргументом множителяexp() (табл. 4.2, поз. 9). Результирующий фазовый спектр запаздывающего импульса изо­бражен на рис. 4.29, б пунктирной ли­нией.

2) Дельта-функция (табл. 4.3, поз. 9). Спектральную плотность – функции находим по формуле (4.41), используя фильтрующее свойствоδ -функции:

Таким образом, амплитудный спектр равномерный и определяется пло­щадьюδ -функции [= 1], а фазовый спектр равен нулю [= 0].

Обратным преобразованием Фурье от функции = 1 пользуются как одним из определенийδ -функции:

Пользуясь свойством временного сдвига (табл. 4.2, поз. 9), определяем спект­ральную плотность функции , запаздывающей на время относительно:

Амплитудный и фазовый спектры функции показаны в табл. 4.3, поз. 10. Обратное преобразование Фурье от функции имеет вид

3) Гармоническое колебание (табл. 4.3, поз. 12). Гармони­ческое колебание не является абсолютно интегрируемым сигналом. Тем не ме­нее для определения его спектральной плотностиприменяют прямое пре­образование Фурье, записывая формулу (4.41) в виде:

Тогда с учетом (4.47) получаем

δ(ω) – дельта-функции, смещенные по оси частот на частоту , соответственно вправо и влево относительно. Как видно из (4.48), спектральная плотность гармонического колебания с конечной амплитудой принимает бесконечно боль­шое значение на дискретных частотахи.

Выполняя аналогичные преобразования, можно получить спектральную плотность колебания (табл. 4.3, поз. 13)

4) Функция вида (табл. 4.3, поз. 11)

Спектральная плотность сигнала в виде постоянного уровня А определяется по формуле (4.48), положив = 0:

5) Единичная функция (или единичный скачок) (табл. 4.3, поз. 8). Функция не является абсолютно интегрируемой. Если представить как предел экспоненциального импульса , т. е.

то спектральную плотность функцииможно определить как предел спектральной плотности экспоненциального импульса (табл. 4.3, поз. 1) при :

Припервое слагаемое в правой части этого выражения равно нулю на всех частотах, кроме= 0, где оно обращается в бесконечность, а площадь под функцией равна постоянной величине

Поэтому пределом первого слагаемого можно считать функцию . Преде­лом второго слагаемого является функция. Окончательно получим

Наличие двух слагаемых в выражении (4.51) согласуется с представлением функции в виде 1/2+1/2sign(t ). Постоянной составляющей 1/2 со­гласно (4.50) соответствует спектральная плотность , а нечетной функции - мнимое значение спектральной плотности .

При анализе воздействия единичного скачка на цепи, передаточная функция которых при = 0 равна нулю (т. е. на цепи, не пропускающие по­стоянный ток), в формуле (4.51) можно учитывать только второе слагаемое, представляя спектральную плотность единичного скачка в виде

6) Комплексный экспоненциальный сигнал (табл. 4.3, поз. 16). Если представить функциюв виде

то на основании линейности преобразования Фурье и с учетом выражений (4.48) и (4.49) спектральная плотность комплексного экспоненциального сигнала

Следовательно, комплексный сигнал обладает несимметричным спект­ром, представленным одной дельта-функцией, смещенной на частотувправо относительно.

7) Произвольная периодическая функция. Представим произвольную перио­дическую функцию (рис. 4.31, а) комплексным рядом Фурье

где - частота следования импульсов.

Коэффициенты ряда Фурье

выражаются через значения спектральной плотности одиночного импуль­са s (t ) на частотах (n =0, ±1, ±2, ...). Подставляя (4.55) в (4.54) и поль­зуясь соотношением (4.53), определяем спектральную плотность перио­дической функции:

Согласно (4.56) спектральная плотность произвольной периодической функции имеет вид последовательности-функций, смещенных друг от­носительно друга, на частоту (рис. 4.31, б). Коэффициенты при δ -функциях изменяются в соответствии со спектральной плотностьюодиночного им­пульсаs (t ) (пунктирная кривая на рис. 4.31,б).

8) Периодическая последовательность δ-функций (табл. 4.3, поз. 17). Спект­ральная плотность периодической последовательности –функций

определяется по формуле (4.56) как частный случай спектральной плотности периодической функции при = 1:

Рис.4.31. Произвольная последовательность импульсов (а) и её спектральная плотность (б)

Рис. 4.32. Радиосигнал (а), спектральные плотности радиосигнала (в) и его огибающей (б)

и имеет вид периодической последовательности δ -функций, умноженных на ко­эффициент .

9) Радиосигнал с прямоугольной огибающей. Радиосигнал, представленный на (рис. 4.32,а), можно записать как

Согласно поз. 11 табл.4.2 спектральная плотность радиосигнала полу­чается путем сдвига спектральной плотностипрямоугольной огибающей по оси частот на вправо и влево с уменьшением ординат в два раза, т. е.

Это выражение получается из (4.42) путем замены частоты на частоты– сдвиг вправо и- сдвиг влево. Преобразование спектра огибающейпоказано на (рис. 4.32, б, в).

Примеры расчета спектров непериодических сигналов приведены так же в .

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную форму, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, введенной в § 2.6 или 2.1, по всем функциям приводит к нулевому спектру процесса (при ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте . Размерность функции , являющейся отношением мощности к полосе астот, есть

Спектральную плотность случайного процесса можно найти, если известен механизм образования случайного процесса. Применительно к шумам, связанным с атомистической структурой материи и электричества, эта задача будет рассмотрена в § 7.3. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию и ограничив ее длительность конечным интервалом Т, можно применить к ней обычное преобразование Фурье и найти спектральную плотность (со). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью формулы (2.66):

Разделив эту энергию на получим среднюю мощность k-й реализации на отрезке Т

При увеличении Т энергия возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход получим

представляет собой спектральную плотность средней мощности рассматриваемой реализации.

В общем случае величина должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция характеризует весь процесс в целом.

Опуская индекс k, получаем окончательное выражение для средней мощности случайного процесса

Если рассматривается случайный процесс с ненулевым средним значением то спектральную плотность следует представить в форме

Лекция 7.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

Подразумевая под случайным процессом множество (ансамбль) реализаций, необходимо иметь в виду, что реализациям, обладающим различной формой, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности по всем реализациям приводит к нулевому спектру процесса (при среднем = 0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях. Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной величины, поскольку величина среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Введенную таким образом спектральную плотность S (ω) в дальнейшем будем называть энергетическим спектром функции x (t ) . Смысл такого названия определяется размерностью функции S (ω) , являющейся отношением мощности к полосе частот:

[S (ω) ] = [ мощность/ полоса частот ] = [мощность×время] = [энергия],

Энергетический спектр можно найти, если известен механизм образования случайного процесса. Здесь же мы ограничимся некоторыми определениями общего характера.

Методы вычисления СПМ

Функции спектральной плотности можно определять тремя различными эквивалентными способами, которые мы рассмотрим ниже:

С помощью ковариационных функций;

С помощью финитного преобразования Фурье;

С помощью фильтрации, возведения в квадрат и усреднения.

Определение спектров с помощью корреляционных функций.

Исторически первый способ определения спектральной плотности появился в математике. Он состоит во взятии преобразования Фурье от предварительно вычисленной корреляционной функции. После вычитания средних значений такие (бесконечные) преобразования Фурье обычно существуют, даже если (бесконечное) преобразование Фурье исходного процесса не существует. Этот подход дает двустороннюю спектральную плотность, определенную для частот f от - до + и обозначаемую S (f ) .

Пусть существуют корреляционные и взаимная корреляционная функции R x (t ), R y (t ) и R xy (t ) . Предположим также, что конечны интегралы от их абсолютных величин

R ( d

На практике эти условия всегда выполняются для реализаций конечной длины. Тогда ПФ функций R (t ) существуют и определяются формулами

S x (f)=

S y (f)=(1)

S xy (f)=

Такие интегралы по конечным реализациям существуют всегда. Функции S x (f ) и S y (f ) называют функциями спектральной плотности процессов x (t ) и y (t ) соответственно или просто спектральными плотностями, а функцию называют взаимной спектральной плотностью двух процессов x (t ) и y (t ) .

Обратные ПФ от формул (1) дают

R x (τ ) =

R y (τ ) = (2)

R xy (τ ) = df .

Соотношения (1) и (2) называют формулами Винера-Хинчина, которые в 30-е годы независимо установили связь между корреляционными функциями и спектральной плотностью через ПФ. При решении практических задач приходится допускать в R (t ) и S (f ) наличие дельта-функций.

Из свойств симметрии стационарных ковариационных функций следует

S x (-f) = S x (f) a S xy (-f) = S yx (f)


Следовательно, спектральная плотность S x (f ) – действительная четная функция, a S xy (f ) – комплексная функция от f .

Тогда спектральные соотношения из (1) можно преобразовать к виду

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С *

Джумагельдин Д

Проверила: Глухова Н.В

Алматы, 2015

І Введение

ІІ Основная часть

1. Спектральная плотность мощности

1.1 Случайные величины

1.2 Плотность вероятности функции от случайной величины

2. Случайный процесс

3. Метод определения спектральной плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.



Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

· методе фильтрации;

· методе преобразования по теореме Винера-Хинчена;

· методе Фурье-преобразования;

· методе с использованием знаковых функций;

· методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х 1 <х <х 2 , определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины х i P(x = x i)=P i , где P i - вероятность, соответствующая i-у уровню величины х.



Понравилась статья? Поделитесь ей