Контакты

Монтаж катушек индуктивности на простых печатных платах. Основы разводки печатных плат. Развязка питания ИС

“Утюжно-лазерная” технология изготовления печатных плат (УЛТ) буквально за пару лет широко распространилась в радиолюбительских кругах и позволяет получать печатные платы достаточно высокого качества. Печатные платы с “ручной прорисовкой” требуют больших затрат времени и не застрахованы от ошибок.

Особые требования к точности рисунка предъявляются при изготовлении печатных катушек индуктивности для высокочастотных цепей. Кромки проводников катушек должны быть максимально ровными, так как это влияет на их добротность. Выполнить вручную рисунок многовитковой спиральной катушки весьма проблематично, и здесь УЛТ вполне может сказать “свое слово”.

Рис. 1


Рис. 2

Итак, все по-порядку. Запускаем компьютерную программу SPRINT-LAYOUT , например, версии 5.0. Устанавливаем в настройках программы:

Масштаб координатной сетки - 1,25 мм;

Ширину линии - 0,8 мм;

Размеры платы - 42,5x42,5 мм;

Внешний диаметр “пятачка” - 1,5 мм;

Диаметр отверстия в “пятачке” - 0,5 мм.

Находим центр платы и рисуем шаблон проводника катушки (рис.1) по координатной сетке с помощью инструмента ПРОВОДНИК, закручивая катушку в нужную сторону (для шаблона необходимо зеркальное изображение, но его можно получить и позднее, при печати). В начало и в конец катушки устанавливаем по “пятачку” для соединения катушки с элементами схемы.

В настройках для печати устанавливаем количество отпечатков на листе, расстояние между отпечатками и, если необходимо “закрутить” катушку в другую сторону, зеркальную печать рисунка. Печатать следует на гладкой бумаге или специальной пленке, установив в настройках принтера максимальную подачу тонера при печати.

Далее следуем по стандартной УЛТ. Подготавливаем фольгированный стеклотекстолит, зачищаем поверхность фольги и обезжириваем, например, ацетоном. Прикладываем шаблон тонером к фольге и проглаживаем горячим утюгом через лист бумаги до надежного сцепления тонера с фольгой.

После под струей воды из-под крана (холодной или комнатной температуры) размачиваем бумагу и осторожно “катышками” удаляем ее, оставляя тонер на фольге платы. Производим травление платы и последующее удаление тонера с нее растворителем, например, ацетоном. На плате остается четкий проводник “печатной” катушки индуктивности высокого качества.

Печатные катушки со спиральными витками по УЛТ получаются немного худшего качества. Дело здесь в квадратной форме пикселей изображения, поэтому края проводника спиральной катушки получаются зубчатыми. Правда, эти неровности достаточно мелкие, и качество катушки, в общем, все равно выше, чем при ручном исполнении.

Снова открываем программу SPRINT-LAYOUT версии 5.0. В инструментарии выбираем SPECIAL FORM - инструмент для рисования многоугольников и спиралей. Выбираем закладку SPIRAL. Устанавливаем:

Начальный радиус (START RADIUS) -2 мм;

Расстояние между витками (DISTANCE)-1,5 мм;

Ширину проводника (TRACK WIDTH) -0,8 мм;

Количество витков (TURNS), например, - 20.

Размер платы, занимаемой такой катушкой, составляет 65x65 мм (рис.2).

Печатные катушки обычно связывают между собой в полосовых фильтрах (ПФ) с помощью конденсаторов малой емкости. Однако возможна и их индуктивная связь, степень которой можно изменять, меняя расстояние между плоскостями катушек или эксцентрично поворачивая одну относительно другой. Фиксированное крепление катушек относительно друг друга можно осу-

ществить с помощью диэлектрических стоек-распорок.

Подстройку индуктивности катушек можно производить замыканием витков, разрывом печатного проводника или его частичным удалением. Это приведет к повышению частоты настройки контура. Снижения частоты можно добиться, припаивая между витками конденсаторы небольшой емкости SMD-типов.

Изготовление катушек УКВ диапазона в виде меандра, прямых и изогнутых линий, гребенчатых фильтров и т.п. с применением УЛТ также добавляет в конечный продукт изящества и, как правило, увеличивает их добротность (за счет “гладких" краев печатных проводников). Однако при изготовлении следует помнить о качестве материала подложки (стеклотекстолита), который с ростом частоты теряет свои свойства изолятора. В эквивалентных схемах сопротивление потерь в диэлектрике следует включать параллельно печатным катушкам, и это сопротивление будет тем меньше, чем выше рабочая частота и хуже качество диэлектрика.

На практике фольгированный стеклотекстолит можно полноценно применять для изготовления печатных резонансных цепей до 2-метрового диапазона включительно (примерно до 150 МГц). Специальные высокочастотные сорта стеклотекстолита можно использовать в диапазоне 70 см (примерно до 470...500 МГц). На более высоких частотах следует применять фольгированный РЧ-фторопласт (тефлон), керамику или стекло.

Печатная катушка индуктивности имеет повышенную добротность за счет уменьшения междувитковой емкости, получаемой, с одной стороны, вследствие малой толщины фольги, с другой, шага “намотки” катушки. Замкнутая рамка из заземленной фольги вокруг печатной катушки в ее плоскости служит экраном от других катушек и печатных проводников, но мало влияет на параметры катушки, если ее периферия находится под малым РЧ-напряжением (соединена с общим проводом), а центр - под высоким.

Литература

1. Г.Панасенко. Изготовление печатных катушек. - Радио, 1987, №5, С.62.

Способом печатания могут быть выполнены многие элементы схемы: резисторы, конденсаторы, катушки индуктивности, многовитковые катушки трансформаторов и дросселей, переключатели и штепсельные разъемы.

Печатные резисторы изготавливают нанесением на поверхность платы тонких лакосажевых пленок.

Конфигурация их (рис. 35, а) бывает самая разнообразная и зависит от возможности обеспечения механической прочности и условий теплоотдачи. Печатным способом выполняют и переменные резисторы, которые состоят из токопроводящего углеродистого или металлического слоя дугообразной формы и контактного ползуна, скользящего по поверхности токопроводящего элемента. Величина сопротивления печатного резистора зависит от состава суспензии, формы рисунка и толщины пленки.

Широкое применение получили пленочные композиционные резисторы типа СЗ-4. Эти резисторы изготовляют непосредственно на поверхности микроплаты. Они могут использоваться в температурном диапазоне от -60 до +125°С, а мощность, рассеиваемая микрорезисторами, не превышает 0,25 Вт.

Печатные конденсаторы выполняются нанесением двух токопроводящих обкладок на обе стороны изоляционного основания (рис. 35, б). Емкость конденсатора определяется площадью его обкладок и толщиной диэлектрика (платы). На рис. 35, в показан полуперемецный печатный конденсатор, у которого пластина статора нанесена непосредственно на изолирующее основание платы, а пластина ротора - на керамический диск, который может поворачиваться вокруг оси параллельно плоскости платы, изменяя величину емкости. Применение керамических материалов позволяет получать стабильные конденсаторы с номиналами от единиц до нескольких сотен пикофарад и рабочим напряжением 100В и более.

Печатные катушки индуктивности (рис. 35, г) изготавливают в виде плоских спиральных металлизированных линий круглой, овальной, квадратной или другой формы, нанесенных на плату. Величина индуктивности таких катушек зависит от числа витков катушки, расстояния между ними и их диаметра. Для увеличения индуктивности печатных катушек их выполняют многослойными, при этом одну катушку отделяют от другой изоляционным слоем лака, а концы катушек соединяют между собой последовательно. В отдельных случаях увеличение индуктивности достигается введением в центр спирали магнитодиэлектрических сердечников или нанесением слоя магнитной краски в поле катушки. На печатных схемах можно создавать и переменную индуктивность, для чего над напечатанной катушкой устанавливают медную или алюминиевую пластинку, которую можно перемещать.

Для увеличения добротности катушек на иихнаращивают гальваническим способом слой серебра толщиной 20...50 мкм.

Печатные трансформаторы и дроссели выполняются нанесением отдельных спиральных катушек на гибкое основание из фторопласта, лакоткани, бакелизированной бумаги И ли других изоляционных материалов. Печатные обмотки соединяют между собой последовательно и помещают в Специальный корпус или опрессовывают в пластмассовую оболочку.

Печатные переключатели и штепсельные разъемы могут быть изготовлены или непосредственно на плате с печатной схемой радиоприёмника , или на отдельных платах. Печатный переключатель даже самой высокой сложности дешевле, чем изготовленный любым другим способом. Для повышения стойкости контактов печатного переключателя к истиранию их покрывают серебром, что обеспечивает надежность в работе до нескольких сотен тысяч переключений. Для обеспечения повышенной стойкости медные контакты переключателей покрывают слоем родия толщиной б... 10 мкм.

Печатные элементы при необходимости экранируют, нанося на поверхность рисунка слой изоляционного лака, который затем покрывается слоем магнитного, материала. Экранирование проводников выполняют не сплошным, а сетчатым или щелевидным.

Намерением этой статьи является обсуждение распространенных ошибок, совершаемых разработчиками печатных плат, описание воздействия этих ошибок на качественные показатели и рекомендации по разрешению возникших проблем.

ОБЩИЕ СООБРАЖЕНИЯ

Из-за существенных отличий аналоговой схемотехники от цифровой, аналоговая часть схемы должна быть отделена от остальной части, а при ее разводке должны соблюдаться особые методы и правила. Эффекты, возникающие из-за неидеальности характеристик печатных плат, становятся особенно заметными в высокочастотных аналоговых схемах, но погрешости общего вида, описанные в этой статье, могут оказывать воздействие на качественные характеристики устройств, работающих даже в звуковом диапазоне частот.

Печатная плата - компонент схемы

Лишь в редких случаях печатная плата аналоговой схемы может быть разведена так, чтобы вносимые ею воздействия не оказывали никакого влияния на работу схемы. В то же время, любое такое воздействие может быть минимизировано так, чтобы характеристики аналоговой схемы устройства были такими же, как и характеристики модели и прототипа.

Макетирование

Разработчики цифровых схем могут скорректировать небольшие ошибки на изготовленной плате, дополняя ее перемычками или, наоборот, удаляя лишние проводники, внося изменения в работу программируемых микросхем и т.п., переходя очень скоро к следующей разработке. Для аналоговой схемы дело обстоит не так. Некоторые из распространенных ошибок, обсуждаемых в этой статье, не могут быть исправлены дополнением перемычек или удалением лишних проводников. Они могут и будут приводить в нерабочее состояние печатную плату целиком.

Очень важно для разработчика цифровых схем, использующего такие способы исправления, прочесть и понять материал, изложенный в этой статье, заблаговременно, до передачи проекта в производство. Немного внимания, уделенного при разработке, и обсуждение возможных вариантов помогут не только предотвратить превращение печатной платы в утильсырье, но и уменьшить стоимость из-за грубых ошибок в небольшой аналоговой части схемы. Поиск ошибок и их исправление может привести к потерям сотен часов. Макетирование может сократить это время до одного дня или менее. Макетируйте все свои аналоговые схемы.

Источники шума и помех

Шум и помехи являются основнымм элементами, ограничивающими качественные характеристики схем. Помехи могут как излучаться источниками, так и наводиться на элементы схемы. Аналоговая схема часто располагается на печатной плате вместе с быстродействующими цифровыми компонентами, включая цифровые сигнал-процессоры (DSP).

Высокочастотные логические сигналы создают значительные радиочастотные помехи (RFI). Количество источников излучения шума огромно: ключевые источники питания цифровых систем, мобильные телефоны, радио и телевидение, источники питания ламп дневного света, персональные компьютеры, грозовые разряды и т.д. Даже если аналоговая схема работает в звуковом частотном диапазоне, радиочастотные помехи могут создавать заметный шум в выходном сигнале.

КАТЕГОРИИ ПЕЧАТНЫХ ПЛАТ

Выбор конструкции печатной платы является важным фактором, определяющим механические характеристики при использовании устройства в целом. Для изготовления печатных плат используются материалы различного уровня качества. Наиболее подходящим и удобным для разработчика будет, если изготовитель печатных плат находится неподалеку. В этом случае легко осуществить контроль удельного сопротивления и диэлектрической постоянной - основных параметров материала печатной платы. К сожалению, этого бывает недостаточно и часто необходимо знание других параметров, таких как воспламеняемость, высокотемпературная стабильность и коэффициент гигроскопичности. Эти параметры может знать только производитель компонентов, используемых при производстве печатных плат.

Слоистые материалы обозначаются индексами FR (flame resistant, сопротивляемость к воспламенению) и G. Материал с индексом FR-1 обладает наибольшей горючестью, а FR-5 - наименьшей. Материалы с индексами G10 и G11 обладают особыми характеристиками. Материалы печатных плат приведены в табл. 1.

Не используйте печатную плату категории FR-1. Есть много примеров использования печатных плат FR-1, на которых имеются повреждения от теплового воздействия мощных компонентов. Печатные платы этой категории более похожи на картон.

FR-4 часто используется при изготовлении промышленного оборудования, в то время, как FR-2 используется в производстве бытовой техники. Эти две категории стандартизованы в промышленности, а печатные платы FR-2 и FR-4 часто подходят для большинства приложений. Но иногда неидеальность характеристик этих категорий заставляет использовать другие материалы. Например, для очень высокочастотных приложений в качестве материала печатных плат используются фторопласт и даже керамика. Однако, чем экзотичнее материал печатной платы, тем выше может быть цена.

При выборе материала печатной платы обращайте особое внимание на его гигроскопичность, поскольку этот параметр може оказать сильный негативный эффект на желаемые характеристики платы - поверхностное сопротивление, утечки, высоковольтные изоляционные свойства (пробои и искрения) и механическая прочность. Также обращайте внимание на рабочую температуру. Участки с высокой температурой могут встречаться в неожиданных местах, например, рядом с большими цифровыми интегральными схемами, переключения которых происходят на высокой частоте. Если такие участки расположены непосредственно под аналоговыми компонентами, повышение температуры может сказаться на изменении характеристик аналоговой схемы.

Таблица 1

Компоненты, комментарии

бумага, фенольная композиция: прессование и штамповка при комнатной температуре, высокий коэффициент гигроскопичности

бумага, фенольная композиция: применимый для односторонних печатных плат бытовой техники, невысокий коэффициент гигроскопичности

бумага, эпоксидная композиция: разработки с хорошими механическими и электрическими характеристиками

стеклоткань, эпоксидная композиция: прекрасные механические и электрические свойства

стеклоткань, эпоксидная композиция: высокая прочность при повышенных температурах, отсутствие воспламенения

стеклоткань, эпоксидная композиция: высокие изоляционные свойства, наиболее высокая прочность стеклоткани, низкий коэффициент гигроскопичности

стеклоткань, эпоксидная композиция: высокая прочность на изгиб при повышенных температурах, высокая сопротивляемость растворителям

После того, как материал печатной платы выбран, необходимо определить толщину фольги печатной платы. Этот параметр в первую очередь выбирается исходя из максимальной величины протекающего тока. По возможности, старайтесь избегать применения очень тонкой фольги.

КОЛИЧЕСТВО СЛОЕВ ПЕЧАТНОЙ ПЛАТЫ

В зависимости от общей сложности схемы и качественных требований разработчик должен определить количество слоев печатной платы.

Однослойные печатные платы

Очень простые электронные схемы выполняются на односторонних платах с использованием дешевых фольгированных материалов (FR-1 или FR-2) и часто имеют много перемычек, напоминая двухсторонние платы. Такой способ создания печатных плат рекомендуется только для низкочастотных схем. По причинам, которые будут описаны ниже, односторонние печатные платы в большой степени восприимчивы к наводкам. Хорошую одностороннюю печатную плату достаточно сложно разработать из-за многих причин. Тем не менее хорошие платы такого типа встречаются, но при их разработке требуется очень многое обдумывать заранее.

Двухслойные печатные платы

На следующем уровне стоят двухсторонние печатные платы, которые в большинстве случаев используют в качестве материала подложки FR-4, хотя иногда встречается и FR-2. Применение FR-4 более предпочтительнее, поскольку в печатных платах из этого материала отверстия получаются более лучшего качества. Схемы на двухсторонних печатных платах разводятся гораздо легче, т.к. в двух слоях проще осуществить разводку пересекающихся трасс. Однако для аналоговых схем пересечение трасс выполнять не рекомендуется. Где возможно, нижний слой (bottom) необходимо отводить под полигон земли, а остальные сигналы разводить в верхнем слое (top). Использование полигона в качестве земляной шины дает несколько преимуществ:

  • общий провод является наиболее часто подключаемым в схеме проводом; поэтому резонно иметь "много" общего провода для упрощения разводки.
  • увеличивается механическая прочность платы.
  • уменьшается сопротивление всех подключений к общему проводу, что, в свою очередь, уменьшает шум и наводки.
  • увеличивается распределенная емкость для каждой цепи схемы, помогая подавлять излучаемый шум.
  • полигон, являющийся экраном, подавляет наводки, излучаемые источниками, располагающимися со стороны полигона.

Двухсторонние печатные платы, несмотря на все свои преимущества, не являются лучшими, особенно для малосигнальных или высокоскоростных схем. В общем случае, толщина печатной платы, т.е. расстояние между слоями металлизации, равняется 1,5 мм, что слишком много для полной реализации некоторых преимуществ двухслойной печатной платы, приведенных выше. Распределенная емкость, например, слишком мала из-за такого большого интервала.

Многослойные печатные платы

Для ответственных схемотехнических разработок требуются многослойные печатные платы (МПП). Некоторые причины их применения очевидны:

  • такая же удобная, как и для шины общего провода, разводка шин питания; если в качестве шин питания используются полигоны на отдельном слое, то довольно просто с помощью переходных отверстий осуществить подводку питания к каждому элементу схемы;
  • сигнальные слои освобождаются от шин питания, что облегчает разводку сигнальных проводников;
  • между полигонами земли и питания появляется распределенная емкость, которая уменьшает высокочастотный шум.

Кроме этих причин применения многослойных печатных плат существуют другие, менее очевидные:

лучшее подавление электромагнитных (EMI) и радиочастотных (RFI) помех благодаря эффекту отражения (image plane effect), известному еще во времена Маркони. Когда проводник размещается близко к плоской проводящей поверхности, большая часть возвратных высокочастотных токов будет протекать по плоскости непосредственно под проводником. Направление этих токов будет противоположно направлению токов в проводнике. Таким образом, отражение проводника в плоскости создает линию передачи сигнала. Поскольку токи в проводнике и в плоскости равны по величине и противоположны по направлению, создается некоторое уменьшение излучаемых помех. Эффект отражения эффективно работает только при неразрывных сплошных полигонах (ими могут быть как полигоны земли, так и полигоны питания). Любое нарушение целостности будет приводить к уменьшению подавления помех.
снижение общей стоимости при мелкосерийном производстве. Несмотря на то, что изготовление многослойных печатных плат обходится дороже, их возможное излучение меньше, чем у одно- и двухслойных плат. Следовательно, в некоторых случаях применение лишь многослойных плат позволит выполнить требования по излучению, поставленные при разработке, и не проводить дополнительных испытаний и тестирований. Применение МПП может снизить уровень излучаемых помех на 20 дБ по сравнению с двухслойными платами.

Порядок следования слоев

У неопытных разработчиков часто возникает некоторое замешательство по поводу оптимального порядка следования слоев печатной платы. Возьмем для примера 4-слойную палату, содержащую два сигнальных слоя и два полигонных слоя - слой земли и слой питания. Какой порядок следования слоев лучший? Сигнальные слои между полигонами, которые будут служить экранами? Или же сделать полигонные слои внутренними, чтобы уменьшить взаимовлияние сигнальных слоев?

При решении этого вопроса важно помнить, что часто расположение слоев не имеет особого значения, поскольку все равно компоненты располагаются на внешних слоях, а шины, подводящие сигналы к их выводам, порой проходят через все слои. Поэтому любые экранные эффекты представляют собой лишь компромисс. В данном случае лучше позаботиться о создании большой распределенной емкости между полигонами питания и земли, расположив их во внутренних слоях.

Другим преимуществом расположения сигнальных слоев снаружи является доступность сигналов для тестирования, а также возможность модификации связей. Любой, кто хоть раз изменял соединения проводников, располагающихся во внутренних слоях, оценит эту возможность.

Для печатных плат с более, чем четырьмя слоями, существует общее правило располагать высокоскоростные сигнальные проводники между полигонами земли и питания, а низкочастотным отводить внешние слои.

ЗАЗЕМЛЕНИЕ

Хорошее заземление - общее требование насыщенной, многоуровневой системы. И оно должно планироваться с первого шага дизайнерской разработки.

Основное правило: разделение земли.

Разделение земли на аналоговую и цифровую части - один из простейших и наиболее эффективных методов подавления шума. Один или более слоев многослойной печатной платы обычно отводится под слой земляных полигонов. Если разработчик не очень опытен или невнимателен, то земля аналоговой части будет непосредственно соединена с этими полигонами, т.е. аналоговый возвратный ток будет использовать такую же цепь, что и цифровой возвратный ток. Авторазводчики работают примерно также и объединяют все земли вместе.

Если переработке подвергается ранее разработанная печатная плата с единым земляным полигоном, объединяющим аналоговую и цифровую земли, то необходимо сначала физически разделить земли на плате (после этой операции работа платы становится практически невозможной). После этого прозводятся все подключения к аналоговому земляному полигону компонентов аналоговой схемы (формируется аналоговая земля) и к цифровому земляному полигону компонентов цифровой схемы (формируется цифровая земля). И лишь после этого в источнике производится объединение цифровой и аналоговой земли.

Другие правила формирования земли:

Шины питания и земли должны находится под одним потенциалом по переменному току, что подразумевает использование конденсаторов развязки и распределенной емкости.
Не допускайте перекрытий аналоговых и цифровых полигонов. Располагайте шины и полигоны аналогового питания над полигоном аналоговой земли (аналогично для шин цифрового питания). Если в каком-либо месте существует перекрытие аналогового и цифрового полигона, распределенная емкость между перекрывающимися участками будет создавать связь по переменному току, и наводки от работы цифровых компонентов попадут в аналоговую схему. Такие перекрытия аннулируют изоляцию полигонов.
Разделение не означает электрической изоляции аналоговой от цифровой земли. Они должны соединяться вместе в каком-то, желательно одном, низкоимпедансном узле. Правильная, с точки зрения земли, система имеет только одну землю, которая является выводом заземления для систем с питанием от сетевого переменного напряжения или общим выводом для систем с питанием от постоянного напряжения (например, аккумулятора). Все сигнальные токи и токи питания в этой схеме должны возвращаться к этой земле в одну точку, которая будет служить системной землей. Такой точкой может быть вывод корпуса устройства. Важно понимать, что при подсоединении общего вывода схемы к нескольким точкам корпуса могут образовываться земляные контуры. Создание единственной общей точки объединения земель является одним из наиболее трудных аспектов системного дизайна.
По возможности разделяйте выводы разъемов, предназначенные для передачи возвратных токов - возвратные токи должны объединяться только в точке системной земли. Старение контактов разъемов, а также частая расстыковка их ответных частей приводит к увеличению сопротивления контактов, следовательно, для более надежной работы необходимо использование разъемов с некоторым количеством дополнительных выводов. Сложные цифровые печатные платы имеют много слоев и содержат сотни или тысячи проводников. Добавление еще одного проводника редко создает проблему в отличие от добавляемых дополнительных выводов разъемов. Если это не удается сделать, то необходимо создавать два проводника возвратного тока для каждой силовой цепи на плате, соблюдая особые меры предосторожности.
Важно отделять шины цифровых сигналов от мест на печатной плате, где расположены аналоговые компоненты схемы. Это предполагает изоляцию (экранирование) полигонами, создание коротких трасс аналоговых сигналов и внимательное размещение пассивных компонентов при наличии рядом расположенных шин высокоскоростных цифровых и ответственных аналоговых сигналов. Шины цифровых сигналов должны разводиться вокруг участков с аналоговыми компонентами и не перекрываться с шинами и полигонами аналоговой земли и аналогового питания. Если этого не делать, то разработка будет содержать новый непредусмотренный элемент - антенну, излучение которой будет воздействовать на высокоимпедансные аналоговые компоненты и проводники.

Почти все сигналы тактовых частот являются достаточно высокочастотными сигналами, поэтому даже небольшие емкости между трассами и полигонами могут создавать значительные связи. Необходимо помнить, что не только основная тактовая частота может вызывать проблему, но и ее высшие гармоники.

Имеется лишь один случай, когда необходимо объединение аналоговых и цифровых сигналов над областью полигона аналоговой земли. Аналого-цифровые и цифро-аналоговые преобразователи размещаются в корпусах с выводами аналоговой и цифровой земли. Принимая во внимание предыдущие рассуждения, можно предположить, что вывод цифровой земли и вывод аналоговой земли должны быть подключенны к шинам цифровой и аналоговой земли соответственно. Однако в данном случае это не верно.

Названия выводов (аналоговый или цифровой) относятся лишь к внутренней структуре преобразователя, к его внутренним соединениям. В схеме эти выводы должны быть подключены к шине аналоговой земли. Соединение может быть выполнено и внутри интегральной схемы, однако получить низкое сопротивление такого соединения довольно сложно из-за топологических ограничений. Поэтому при использовании преобразователей предполагается внешнее соединение выводов аналоговой и цифровой земли. Если этого не сделать, то параметры микросхемы будут значительно хуже приведенных в спецификации.

Необходимо учитывать то, что цифровая элементы преобразователя могут ухудшать качественные характеристики схемы, привнося цифровые помехи в цепи аналоговой земли и аналогового питания. При разработке преобразователей учитывается это негативное воздействие так, чтобы цифровая часть потребляла как можно меньше мощности. При этом помехи от переключений логических элементов уменьшаются. Если цифровые выводы преобразователя не сильно нагружены, то внутренние переключения обычно не вызывают особых проблем. При разработке печатной платы, содержащей АЦП или ЦАП, необходимо должным образом отнестись к развязке цифрового питания преобразователя на аналоговую землю.

ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ПАССИВНЫХ КОМПОНЕНТОВ

Для правильной работы аналоговых схем весьма важен правильный выбор пассивных компонентов. Начинайте дизайнерскую разработку с внимательного рассмотрения высокочастотных характеристик пассивных компонентов и предварительного размещения и компоновки их на эскизе платы.

Большое число разработчиков совершенно игнорируют частотные ограничения пассивных компонентов при использовании в аналоговой схемотехнике. Эти компоненты имеют ограниченные частотные диапазоны и их работа вне специфицированной частотной области может привести к непредсказуемым результатам. Кто-то может подумать, что это обсуждение касается только высокоскоростных аналоговых схем. Однако, это далеко не так - высокочастотные сигналы достаточно сильно воздействуют на пассивные компоненты низкочастотных схем посредством излучения или прямой связи по проводникам. Например, простой низкочастотный фильтр на операционном усилителе может легко превращаться в высокочастотный фильтр при воздействии на его вход высокой частоты.

Резисторы

Обычно применяются резисторы трех типов: 1) проволочные, 2) углеродные композитные и 3) пленочные. Не надо иметь много воображения, чтобы понять, как проволочный резистор может превращаться в индуктивность, поскольку он представляет собой катушку с проводом из высокоомного металла. Большинство разработчиков электронных устройств не имеют понятия о внутренней структуре пленочных резисторов, которые также представляют собой катушку, правда, из металлической пленки. Поэтому пленочные резисторы также обладают индуктивностью, которая меньше, чем у проволочных резисторов. Пленочные резисторы с сопротивлением не более 2 кОм можно свободно использовать в высокочастотных схемах. Выводы резисторов параллельны друг другу, поэтому между ними существует заметная емкостная связь. Для резисторов с большим сопротивлением межвыводная емкость будет уменьшать полный импеданс на высоких частотах.

Конденсаторы

Высокочастотные характеристики конденсаторов могут быть представлены эквивалентной схемой, приведенной на рисунке 6.

Конденсаторы в аналоговых схемах используются в качестве элементов развязки и фильтрующих компонентов.

Электролитический конденсатор емкостью 10 мкФ обладает сопротивлением 1,6 Ом на частоте 10 кГц и 160 мкОм на частоте 100 МГц. Так ли это?

При использовании электролитических конденсаторов необходимо следить за правильным подключением. Положительный вывод должен быть подключен к более положительному постоянному потенциалу. Неправильное подключение приводит к протеканию через электролитический конденсатор постоянного тока, что может вывести из строя не только сам конденсатор, но и часть схемы.

В редких случаях разность потенциалов по постоянному току между двумя точками в схеме может менять свой знак. Это требует применения неполярных электролитических конденсаторов, внутренняя структура которых эквивалентна двум полярным конденсаторам, соединенным последовательно.

Индуктивности

Печатная плата

Сама печатная плата обладает характеристиками рассмотренных выше пассивных компонентов, правда, не столь очевидными.

Рисунок проводников на печатной плате может быть как источником, так и приемником помех. Хорошая разводка проводников уменьшает чувствительность аналоговой схемы к излучению источников.

Печатная плата восприимчива к излучению, поскольку проводники и выводы компонентов образовывают своеобразные антенны. Теория антенн представляет собой достаточно сложный предмет для изучения и не рассматривается в этой статье. Тем не менее, некоторые основы здесь приводятся.

Немного из теории антенн

На постоянном токе или низких частотах преобладает активная составляющая. При повышении частоты реактивная составляющая становится все более и более значимой. В диапазоне от 1 кГц до 10 кГц индуктивная составляющая начинает оказывать влияние, и проводник более не является низкоомным соединителем, а скорее выступает как катушка индуктивности.

Обычно, трассы на печатной плате обладают значениями от 6 нГн до 12 нГн на сантиметр длины. Например, 10-сантиметровый проводник обладает сопротивлением 57 мОм и индуктивностью 8 нГн на см. На частоте 100 кГц реактивное сопротивление становится равным 50 мОм, а на более высоких частотах проводник будет представлять собой скорее индуктивность, чем активное сопротивление.

Правило штыревой антенны гласит, что она начинает ощутимо взаимодействовать с полем при своей длине около 1/20 от длины волны, а максимальное взаимодействие происходит при длине штыря, равной 1/4 от длины волны. Поэтому 10-сантиметровый проводник из примера в предыдущем параграфе начнет становиться довольно хорошей антенной на частотах выше 150 МГц. Необходимо помнить, что несмотря на то, что генератор тактовой частоты цифровой схемы может и не работать на частоте выше 150 МГц, в его сигнале всегда присутствуют высшие гармоники. Если на печатной плате присутствуют компоненты со штыревыми выводами значительной длины, то такие выводы также могут служить антеннами.

Другой основной тип антенн - петлевые антенны. Индуктивность прямого проводника сильно увеличивается, когда он изгибается и становится частью дуги. Увеличивающаяся индуктивность понижает частоту, на которой начинает происходить взаимодействие антенны с линиями поля.

Опытные дизайнеры печатных плат, достаточно хорошо разбирающиеся в теории петлевых антенн, знают, что нельзя создавать петли для критичных сигналов. Некоторые разработчики, однако, не задумываются об этом, и проводники возвратного и сигнального тока в их схемах представляют собой петли.

Теория отражения и согласования сигналов находится близко к теории антенн.

Когда проводник печатной платы поворачивает на угол 90° может возникнуть отражение сигнала. Это происходит, главным образом, из-за изменения ширины пути прохождения тока. В вершине угла ширина трассы увеличивается в 1.414 раза, что приводит к рассогласованию характеристик линии передачи, особенно распределенной емкости и собственной индуктивности трассы. Довольно часто необходимо повернуть на печатной плате трассу на 90°. Многие современные CAD-пакеты позволяют сглаживать углы проведенных трасс или проводить трассы в виде дуги. На рисунке 9 показаны два шага улучшения формы угла. Только последний пример поддерживает постоянной ширину трассы и минимизирует отражения.

Совет для опытных разводчиков печатных плат: оставляйте процедуру сглаживания на последний этап работ перед созданием каплеобразных выводов и заливкой полигонов. Иначе, CAD-пакет будет производить сглаживание дольше из-за более сложных вычислений.

Между проводниками печатной платы, находящимися на разных слоях, возникает емкостная связь, когда они пересекаются. Иногда это может создать проблему. Проводники, находящиеся друг над другом на смежных слоях, создают длинный пленочный конденсатор.

Например, печатная плата может обладать следующими параметрами:
- 4 слоя; сигнальный и слой полигона земли - смежные,
- межслойный интервал - 0,2 мм,
- ширина проводника - 0,75 мм,
- длина проводника - 7,5 мм.

Типовое значение диэлектрической постоянной ER для FR-4 равняется 4.5.

Значение емкости между этими двумя шинами, равно 1,1 пФ. Даже такая, казалось бы, небольшая емкость для некоторых приложений является недопустимой.

Происходит удвоение амплитуды выходного сигнала на частотах, близких к верхнему пределу частотного диапазона ОУ. Это, в свою очередь, может привести к генерации, особенно на рабочих частотах антенны (выше 180 МГц).

Этот эффект порождает многочисленные проблемы, для решения которых, тем не менее, существует много способов. Самый очевидный из них - уменьшение длины проводников. Другой способ - уменьшение их ширины. Нет причины применения проводника такой ширины для подводки сигнала к инвертирующему входу, т.к. по этому проводнику протекает очень небольшой ток. Уменьшение длины трассы до 2,5 мм, а ширины до 0,2 мм приведет к уменьшению емкости до 0,1 пФ, а такая емкость уже не приведет к столь значительному подъему частотной характеристики. Еще один способ решения - удаление части полигона под инвертирующим входом и проводником, подходящим к нему.

Ширину проводников печатной платы невозможно бесконечно уменьшить. Предельная ширина определяется как технологическим процессом, так и толщиной фольги. Если два проводника проходят близко друг к другу, то между ними образуется емкостная и индуктивная связь.

Сигнальные проводники не должны разводиться параллельно друг другу, исключая случаи разводки дифференциальных или микрополосковых линий. Зазор между проводниками должен быть минимум в три раза больше ширины проводников.

Емкость между трассами в аналоговых схемах может создать затруднения при больших сопротивлениях резисторов (несколько МОм). Относительно большая емкостная связь между инвертирующим и неинвертирующим входами операционного усилителя легко может привести к самовозбуждению схемы.

Например, при d=0,4 мм и h=1,5 мм (достаточно распространенные величины) индуктивность отверстия равна 1,1 нГн.

Помните, что, если в схеме присутствуют большие сопротивления, то особое внимание следует уделить очистке платы. На заключительных операциях изготовления печатной платы должны удаляться остатки флюса и загрязнений. В последнее время при монтаже печатных плат достаточно часто применяются водорастворимые флюсы. Являясь менее вредными, они легко удаляются водой. Но при этом отмывка платы недостаточно чистой водой может привести к дополнительным загрязнениям, которые ухудшают диэлектрические характеристики. Следовательно, очень важно производить отмывку печатной платы с высокоимпедансной схемой свежей дистиллированой водой.

РАЗВЯЗКА СИГНАЛОВ

Как уже отмечалось, помехи могут проникать в аналоговую часть схемы через цепи питания. Для уменьшения таких помех применяются развязывающие (блокировочные) конденсаторы, уменьшающие локальный импеданс шин питания.

Если необходимо развести печатную плату, на которой имеются и аналоговая, и цифровая части, то необходимо иметь хотя бы небольшое представление об электрических характеристиках логических элементов.

Типовой выходной каскад логического элемента содержит два транзистора, последовательно соединенные между собой, а также между цепями питания и земли.

Эти транзисторы в идеальном случае работают строго в противофазе, т.е. когда один из них открыт, то в этот же момент времени второй закрыт, формируя на выходе либо сигнал логической единицы, либо логического нуля. В установившемся логическом состоянии потребляемая мощность логического элемента невелика.

Ситуация кардинально меняется, когда выходной каскад переключается из одного логического состояния в другое. В этом случае в течение короткого промежутка времени оба транзистора могут быть открыты одновременно, а ток питания выходного каскада сильно увеличивается, поскольку уменьшается сопротивление участка пути тока от шина питания до шины земли через два последовательно соединенных транзистора. Потребляемая мощность скачкообразно возрастает, а затем также убывает, что приводит к локальному изменению напряжения питания и возникновению резкого, кратковременного изменения тока. Такие изменения тока приводят к излучению радиочастотной энергии. Даже на сравнительно простой печатной плате может быть десятки или сотни рассмотренных выходных каскадов логических элементов, поэтому суммарный эффект от их одновременной работы может быть очень большим.

Невозможно точно предсказать диапазон частот, в котором будут находиться эти выбросы тока, поскольку частота их возникновения зависит от множества причин, в том числе и от задержки распространения переключений транзисторов логического элемента. Задержка, в свою очередь, также зависит от множества случайных причин, возникающих в процессе производства. Шум от переключений имеет широкополосное распределение гармонических составляющих во всем диапазоне. Для подавления цифрового шума существует несколько способов, применение которых зависит от спектрального распределения шума.

В таблице 2 представлены максимальные рабочие частоты для распространенных типов конденсаторов.

Таблица 2

Из таблицы очевидно, что танталовые электролитические конденсаторы применяются для частот ниже 1 МГц, на более высоких частотах должны применяться керамические конденсаторы. Необходимо не забывать, что конденсаторы имеют собственный резонанс и их неправильный выбор может не только не помочь, но и усугубить проблему. На рисунке 15 показаны типовые собственные резонансы двух конденсаторов общего применения - 10 мкФ танталового электролитического и 0,01 мкФ керамического.

Реальные характеристики могут отличаться у различных производителей и даже от партии к партии у одного производителя. Важно понимать, что для эффективной работы конденсатора подавляемые им частоты должны находиться в более низком диапазоне, чем частота собственного резонанса. В противном случае характер реактивного сопротивления будет индуктивным, а конденсатор перестанет эффективно работать.

Не стоит заблуждаться относительно того, что один 0,1 мкФ конденсатор будет подавлять все частоты. Небольшие конденсаторы (10 нФ и менее) могут работать более эффективно на более высоких частотах.

Развязка питания ИС

Развязка питания интегральных схем с целью подавления высокочастотного шума состоит в применении одного или нескольких конденсаторов, подключенных между выводами питания и земли. Важно, чтобы проводники, соединяющие выводы с конденсаторами, были короткими. Если это не так, то собственная индуктивность проводников будет играть заметную роль и сводить на нет выгоды от применения развязывающих конденсаторов.

Развязывающий конденсатор должен быть подключен к каждому корпусу микросхемы, независимо от того, сколько операционных усилителей находится внутри корпуса - 1, 2 или 4. Если ОУ питается двухполярным питанием, то, само собой разумеется, что развязывающие конденсаторы должны располагаться у каждого вывода питания. Значение емкости должно быть тщательно выбрано в зависимости от типа шума и помех, присутствующих в схеме.

В особо сложных случаях может появиться необходимость добавления индуктивности, включенной последовательно с выводом питания. Индуктивность должна располагаться до, а не после конденсаторов.

Другим, более дешевым способом является замена индуктивности резистором с малым сопротивлением (10...100 Ом). При этом вместе с развязывающим конденсатором резистор образует низкочастотный фильтр. Этот способ уменьшает диапазон питания операционного усилителя, который к тому же становится более зависимым от потребляемой мощности.

Обычно для подавления низкочастотных помех в цепях питания бывает достаточно применить один или несколько алюминиевых или танталовых электролитических конденсаторов у входного разъема питания. Дополнительный керамический конденсатор будет подавлять высокочастотные помехи от других плат.

РАЗВЯЗКА ВХОДНЫХ И ВЫХОДНЫХ СИГНАЛОВ

Множество шумовых проблем является результатом непосредственного соединения входных и выходных выводов. В результате высокочастотных ограничений пассивных компонентов реакция схемы на воздействие высокочастотного шума может быть достаточно непредсказуемой.

В ситуациии, когда частотный диапазон наведенного шума в значительной степени отличается от частотного диапазона работы схемы, решение просто и очевидно - размещение пассивного RC-фильтра для подавления высокочастотных помех. Однако, при применении пассивного фильтра надо быть осторожным: его характеристики (из-за неидеальности частотных характеристик пассивных компонентов) утрачивают свои свойства на частотах, в 100...1000 раз превышающих частоту среза (f3db). При использовании последовательно соединенных фильтров, настроенных на разные частотные диапазоны, более высокочастотный фильтр должен быть ближайшим к источнику помех. Индуктивности на ферритовых кольцах также могут применяться для подавления шума; они сохраняют индуктивный характер сопротивления до некоторой определенной частоты, а выше их сопротивление становится активным.

Наводки на аналоговую схему могут быть настолько большими, что избавиться (или, по крайней мере, уменьшить) от них возможно только с помощью применения экранов. Для эффективной работы они должны быть тщательно спроектированы так, чтобы частоты, создающие наибольшие проблемы, не смогли попасть в схему. Это означает, что экран не должен иметь отверстия или вырезы с размерами, большими, чем 1/20 длины волны экранируемого излучения. Хорошая идея отводить достаточное место под предполагаемый экран с самого начала проектирования печатной платы. При использовании экрана можно дополнительно использовать ферритовые кольца (или бусинки) для всех подключений к схеме.

КОРПУСА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

В одном корпусе обычно размещаются один, два или четыре операционных усилителя.

Одиночный ОУ часто также имеет дополнительные входы, например, для регулировки напряжения смещения. Сдвоенные и счетверенные ОУ имеют лишь инвертирующий и неинвертирующий входы и выход. Поэтому при необходимости иметь дополнительные регулировки надо применять одиночные операционные усилители. При использовании дополнительных выводов необходимо помнить, что по своей структуре они являются вспомогательными входами, поэтому управление ими должно осущуствляться аккуратно и в соответствии с рекомендациями производителя.

В одиночном ОУ выход располагается на противоположной стороне от входов. Это может создать затруднение при работе усилителя на высоких частотах из-за протяженных проводников обратной связи. Один из путей преодоления этого состоит в размещении усилителя и компонентов обратной связи на разных сторонах печатной платы. Это, однако, приводит к как минимум двум дополнительным отверстиям и вырезам в полигоне земли. Иногда стоит использовать сдвоенный ОУ для разрешения данной проблемы, даже если второй усилитель не используется (при этом его выводы должны быть подключены должным образом).

Сдвоенные ОУ особенно часто используются в стереофонических усилителях, а счетверенные - в схемах многокаскадных фильтров. Однако, в этом есть довольно значительный минус. Несмотря на то, что современная технология обеспечивает приличную изоляцию между сигналами усилителей, расположенных на одном кремниевом кристалле, между ними все же существуют некоторые перекрестные помехи. Если необхомимо иметь очень малую величину таких помех, то необходимо использовать одиночные операционные усилители. Перекрестные помехи возникают не только при использовании сдвоенных или счетверенных усилителей. Их источником может служить очень близкое расположение пассивных компонентов разных каналов.

Сдвоенные и счетверенные ОУ, кроме вышесказанного, позволяют осуществить более плотный монтаж. Отдельные усилители как бы зеркально расположены друг относительно друга.
Необходимо обратить внимание на то, что проводники формирователя половины напряжения питания располагаются непосредственно под корпусом интегральной схемы, что позволяет уменьшить их длину. Этот пример иллюстрирует не то, как должно быть, а то, что должно быть сделано. Напряжение среднего уровня, например, могло бы быть единым для всех четырех усилителей. Пассивные компоненты могут быть соответствующего размера. Например, планарные компоненты типоразмера 0402 соответствуют расстоянию между выводами стандартного корпуса SO. Это позволяет сделать длину проводников очень короткой для высокочастотных приложений.

При размещении операционных усилителей в корпусах типа DIP и пассивных компонентов с проволочными выводами требуется наличие на печатной плате переходных отверстий для их монтажа. Такие компоненты в настоящее время используются, когда нет особых требований к размерам печатной платы; обычно они стоят дешевле, но стоимость печатной платы в процессе изготовления возрастает из-за сверловки дополнительных отверстий под выводы компонентов.

Кроме того, при использовании навесных компонентов увеличиваются размеры платы и длины проводников, что не позволяет работать схеме на высоких частотах. Переходные отверстия обладают собственной индуктивностью, что также накладывает ограничения на динамические характеристики схемы. Поэтому навесные компоненты не рекомендуется применять для реализации высокочастотных схем или для аналоговых схем, размещенных поблизости с высокоскоростными логическими схемами.

Некоторые разработчики, пытаясь уменьшить длину проводников, размещают резисторы вертикально. С первого взгляда может показаться что, это сокращает длину трассы. Однако при этом увеличивается путь прохождения тока по резистору, а сам резистор представляет собой петлю (виток индуктивности). Излучающая и принимающая способность возрастает многократно.

При поверхностном монтаже не требуется размещения отверстия под каждый вывод компонента. Однако возникают проблемы при тестирования схемы, и приходится использовать переходные отверстия в качестве контрольных точек, особенно при применении компонентов малого типоразмера.

НЕИСПОЛЬЗУЕМЫЕ СЕКЦИИ ОУ

При использовании сдвоенных и счетверенных операционных усилителей в схеме некоторые их секции могут остаться незадействованными и должны быть в этом случае корректно подключены. Ошибочное подключение может привести к увеличению потребляемой мощности, большему нагреву и большему шуму используемых в этом же корпусе ОУ. Выводы неиспользумых операционных усилителей могут быть подключены так: выход усилителя подключен к инвертирующему входу.

ЗАКЛЮЧЕНИЕ

Помните следующие основные моменты и постоянно соблюдайте их при проектировании и разводке аналоговых схем.

  • думайте о печатной плате как о компоненте электрической схемы;
  • имейте представление и понимание об источниках шума и помех;
  • моделируйте и макетируйте схемы.

Печатная плата:

  • используйте печатные платы только из качественного материала (например, FR-4);
  • схемы, выполненные на многослойных печатных платах, на 20 дБ менее восприимчивее к внешним помехам, чем схемы, выполненные на двухслойных платах;
  • используйте разделенные, неперекрывающиеся полигоны для различных земель и питаний;
  • располагайте полигоны земли и питания на внутренних слоях печатной платы.

Компоненты:

  • осознавайте частотные ограничения, вносимые пассивными компонентами и проводниками платы;
  • старайтесь избегать вертикального размещения пассивных компонентов в высокоскоростных схемах;
  • для высокочастотных схем используйте компоненты, предназначенные для поверхностного монтажа;
  • проводники должны быть чем короче, тем лучше;
  • если требуется большая длина проводника, то уменьшайте его ширину;
  • неиспользуемые выводы активных компонентов должны быть правильно подключены.

Разводка:

  • размещайте аналоговую схему вблизи разъема питания;
  • никогда не разводите проводники, передающие логические сигналы, через аналоговую область платы, и наоборот;
  • проводники, подходящие к инвертирующему входу ОУ, делайте короткими;
  • удостоверьтесь, что проводники инвертирующего и неинвертирующего входов ОУ не располагаются параллельно друг другу на большом протяжении;
  • старайтесь избегать применения лишних переходных отверстий, т.к. их собственная индуктивность может привести к возникновению дополнительных проблем;
  • не разводите проводники под прямыми углами и сглаживайте вершины углов, если это возможно.

Развязка:

  • используйте правильные типы конденсаторов для подавления помех в цепях питания;
  • для подавления низкочастотных помех и шумов используйте танталовые конденсаторы у входного разъема питания;
  • для подавления высокочастотных помех и шумов используйте керамические конденсаторы у входного разъема питания;
  • используйте керамические конденсаторы у каждого вывода питания микросхемы; если необходимо, используйте несколько конденсаторов для разных частотных диапазонов;
  • если в схеме происходит возбуждение, то необходимо использовать конденсаторы с меньшим значением емкости, а не большим;
  • в трудных случаях в цепях питания используйте последовательно включенные резисторы малого сопротивления или индуктивности;
  • развязывающие конденсаторы аналогового питания должны подключаться только к аналоговой земле, а не к цифровой.
Просмотров: 17115

В малогабаритной УКВ аппаратуре относительно много места на плате занимают контурные катушки И ВЧ дроссели. Часто именно они определяют габаритную высоту монтажной платы. В некото рых случаях может оказаться целесообразным примене ние плоских катушек - печатных и проволочных. Основой для печатных ВЧ катушек чаще всего служит спе циальная высокочастотная Керамика. Технология произ водства таких катушек непригодна для любительских условий. Однако, как показывает практика, до частот 80-100 МГц вполне удовлетворительные результаты могут быть получены при использовании катушек, изготовленных из фольгированного стеклотекстолита способом травления. Применение для печатных катушек фольгироваиного фторопласта позволяет отодвинуть частотный предел до 200-300 МГц. Плоские проволочные катушки обладают удовлетвори тельной механической прочностью, относительно неболь шой собственной емкостью, простотой изготовления и могут применяться на частотах до 10 МГц. Существен ное увеличение индуктивности и добротности плоских печатных и проволочных катушек может быть получено, если с одной или обеих сторон на катушку наложить ферритовые пластины. Изменяя расстояние между ка тушкой и пластиной (набором немагнитных прокладок или иным путем), можно изменять индуктивность катушки. Можно регулировать индуктивность в некото рых пределах с помощью флажка из немагнитного ме талла (меди или алюминия), перемещающегося вблизи катушки параллельно ей. Проволочные катушки удобно наклеивать непосредст венно на плату или на отдельную пластину, прикрепляе мую к плате. Печатные катушки могут быть произвольной формы. «Заземлять» на плате следует вывод наруж ного витка - в этом случае он играет роль экрана. Можно дополнительно экранировать печатную катушку еще одним наружным незамкнутым витком, соединяе мым с общим проводом устройства. Примеры выполнения катушек показаны на фото.

Рассчитать катушки с достаточной для радиолюбителя точностью можно с помощью номограмм. Порядок расчета печатных и проволочных катушек аналогичен, разница состоит в том, что ширине печатной дорожки печатной катушки соответствует диаметр по меди провода проволочной катушки, а ширине зазора между дорожками - двойная толщина изоляции провода.

Конструктивные размеры катушек показаны на рис. 1, а и б. Номограммы для расчета изображены на рис. 2 и 3. В качестве примера ниже рассмотрен расчет круглой печатной катушки (без сердечника} индуктивностью 0,64 мкГ. Наибольший наружный диаметр D катушки выбираем равным 20 мм, наименьший внутренний d = 8 мм. Необходимо найти число витков w, ширину печатной дорожки S и расстояние Sr между центрами С1 и С2 полуокружностей катушки. Номограмма для расчета круглых катушек представлена на рис. 2. Вычисляем: D + d=20 + 8 = 28 мм = = 2,8 см: D/d = 20:8 = 2,5. На шкалах "D+d" и "D/d" находим соответствующие точки и соединяем их прямой (на рис. 2 - штриховая линия). Через точку пересечения этой прямой с неоцифрованной вспомогательной линией и точку на шкале «L», соответствующую заданной индуктивности L = 0,64 мкГн, проводим прямую до пересечения со шкалой «w», по которой и отсчитываем искомое число витков - 6,5. Значения D + d, D/d или L на шкалах номограммы можно увеличить (умень шить) в 10 или 100 раз, при этом значения w будут со ответственно изменяться в корень из 10 и корень из 100 раз. Ширину S, мм, печатного проводника вычисляем по формуле: S>=Sr = (D - d)/4w; диаметр по изоляции провода проволочной катушки - dиз = (D - d)/2w. Полученный результат округляем до ближайшего боль шего значения ряда 0,5; 0,75; 1.0; 1.25; 1,5 мм и т. д. Sr= (20-8)/4х6,5=0,46; S=0,5 мм. При малых значениях Sr следует принимать Sr = S Для прово лочных катушек dиз округляем до ближайшего стандарт ного диаметра провода по изоляции. Рисунок катушки наносят на фольгированный стекло текстолит циркулем, в который установлен рейсфедер, наполненный химически стойкой краской. Верхние полу окружности (см. рис. 1а) проводят из центра С1, а нижние -- из С2. Расстояние Sr следует выдерживать с возможно большей точностью. После высыхания кра ски катушку травят, как обычно, в растворе хлорного железа. Печатные катушки квадратной формы рассчитывают по номограмме, показанной на рис. 3. Более точные ре зультаты расчета плоских катушек можно получить аналитически, пользуясь формулами, по которым построены номограммы. Эти формулы приведены на рис. 2 и 3. Размерность величин в формулах соответствует ука занной на номограммах. Значения функций "фи" (D/d и f(а/А) сведены в табл. 1 и 2. Проволочные плоские катушки наматывают на разборном каркасе между двумя щечками, укрепленными на стержне. Диаметр сердечника каркаса должен быть равен внутреннему диаметру катушки, а расстояние между щечками - диаметру провода по изоляции. В процессе намотки провод смачивают клеем БФ~2. Щечки должны быть изготовлены из материала, имеющего плохую адгезию к клею (фторопласт, винифлекс). Каркас разбирают после окончания сушки клея. Изго товленные катушки клеят либо непосредственно к плате, либо к пластине из феррита, укрепленной на плате. Катушки, изображенные в заголовке статьи, имеют следующие измеренные параметры: круглая печатная (D = 40 мм) - индуктивность 1,4 мкГн, добротность 95; квадратная (А = 30 мм) - 0,9 мкГн и 180, проволочные верхняя (D=15 мм, провод ПЭВ-1 0,18) - 7,5 мкГн и 48; средняя (D= 11,9 мм, провод ПЭВ-2 0,1) - 9,5 мкГн и 48 и нижняя (D =9мм, провод ПЭЛ 0,05) - 37 мкГн и 43

Плоские печатные катушки чаще всего применяют в диапазонах метровых и дециметровых волн для уменьшения габаритов устройства. Обычно их выполняют с круглой, квадратной формой витков или в форме меандра , хотя можно и в виде многоугольника. В последнее время с появлением технологии многослойных печатных плат, появились и многослойные катушки на печатной плате . Применение сердечника из магнитного материала малоэффективно, - так как такой сердечник удален от витков катушки и может менять ее индуктивность на 3 - 5 %, что в большинстве случаев недостаточно. Поэтому печатные катушки индуктивности применяются в большинстве случаев тогда, когда не требуется подстройка и величина индуктивности не превышает единиц микрогенри.

На нашем сайте можно воспользоваться онлайн калькулятором для расчета катушек на печатной плате

В программе Coil32, начиная с версии 9.6, плоские печатные катушки с круглой и квадратной формой витков формой витков рассчитываются по общей эмпирической формуле:

  • L - индуктивность (мкГн)
  • D - наружный диаметр спирали (мм)
  • d - внутренний диаметр спирали (мм)
  • N - число витков
  • D avg - средний диаметр катушки (мм)
  • φ - коэффициент заполнения

Коэффициенты c 1 - c 4 сведены в таблицу:

Шаг намотки на рисунке обозначен как "s ". При неизменном "s ", если увеличивать ширину витка - увеличивается добротность катушки и ее собственная емкость. Обычно для минимизации размеров катушки ширину печатного проводника делают близкой к расстоянию между проводниками, поэтому в формуле влияние "s " на величину индуктивности не учитывается. Оптимальное значение d/D = 0.4 для круглой катушки и его программа выбирает автоматически. Для квадратной катушки оптимальное значение d/D = 0.362 и его программа также выбирает автоматически.

Погрешность расчета индуктивности по этой формуле не превышает 8% при s не более 3w, т.е. если промежуток между полосками не более двойной ширины полоски.

Индуктивный элемент в виде прямого печатного проводника рассчитывается по следующей эмпирической формуле:

, где:

  • L - индуктивность (мкГн)
  • l - длина проводника (мм)
  • b - ширина проводника (мм)

Такие индуктивные элементы часто применяют в фильтрах ДМВ диапазона. Поскольку собственная емкость такого индуктивного элемента довольно велика, необходимо иметь в виду, что более корректно представлять его в виде отрезка длинной линии с распределенными параметрами. Однако для приблизительных расчетов принятое здесь упрощение модели вполне приемлемо.



Понравилась статья? Поделитесь ей