Контакты

Принцип построения и работа инверторных сварочных аппаратов. Как сделать сварочный инвертор на тиристорах своими руками? Принцип работы схемы косой мост

Недавно собирал сварочный инвертор от Бармалея, на максимальный ток 160 ампер, одноплатный вариант. Названа эта схема в честь её автора - Barmaley. Вот электрическая схема и файл с печатной платой .

Схема инвертора для сварки

Работа инвертора : питание от однофазной сети 220 Вольт выпрямляется, сглаживается конденсаторами и подаётся на транзисторные ключи, которые из постоянного напряжения делают высокочастотное переменное, подаваемое на ферритовый трансформатор. Благодаря высокой частоте мы имеем уменьшение габаритов силового транса и как следствие, применяем не железо, а феррит. Дальше понижающий трансформатор, за ним выпрямитель и дроссель.

Осциллограмы управление полевыми транзисторами. Замерял на стабилитроне кс213б без силовых ключей, коэфициент заполнения 43 и частота 33.

В своём варианте силовые ключи IRG4PC50U заменил на более современные IRGP4063DPBF . Стабилитрон кс213б заменил на два 15 вольтовых мощностью 1.3 ватта встречно включенных, так как в прошлом аппарате кс213б немного грелись. После замены проблема сразу исчезла. Остальное все остается как в схеме.

Это осциллограмма коллектор-эмиттер нижнего ключа (по схеме). При подаче питания 310 вольт через лампу 150 ватт. Осциллограф стоит 5 вольт деление и 5 мкс дел. через делитель умноженное на 10.

Силовой трансформатор намотан на сердечнике B66371-G-X187, N87, E70/33/32 EPCOS Моточные данные: сначала пол первички, вторичка, и снова остатки первички. Провод что на первичке, что на вторичке - диаметром 0.6 мм. Первичка - 10 проводов 0.6 скрученных вместе 18 витков (всего). В первый ряд как раз влазит 9 витков. Далее остатки первички в сторону, мотаем 6 витков проводом 0.6 сложенного в 50 штук так же скрученного. И далее снова остатки первички, то есть 9 витков. Не забываем межслойную изоляцию (использовал несколько слоев кассовой бумаги, 5 или 6, больше не усердствуем, иначе обмотка не влезет в окно). Каждый слой пропитывал эпоксидкой.

Затем все собираем, между половинками Е70 феррита нужен зазор 0.1 мм, по крайним кернам ложим прокладку из обычного кассового чека. Все стягиваем, склеиваем.

Я покрасил из баллончика черной матовой краской, затем лаком. Да, чуть не забыл, каждую обмотку, когда скрутили, обматываем малярным скочем - изолируем, так сказать. Не забываем помечать начало и концы обмоток, пригодится для дальнейшей фазировки и сборки. При неправильной фазировке трансформатора аппарат будет варить в пол-силы.

При включении инвертера в сеть, начинается зарядка выходных конденсаторов. Первоначальный ток их зарядки очень велик, сравним с КЗ, и может привести к выгоранию диодного моста. Не говоря уже о том, что для кондёров это тоже чревато выходом из строя. Чтобы избежать такого резкого скачка тока в момент включения, ставят ограничители заряда конденсаторов. В схеме Бармалея это 2 резистора по 30 Ом, мощностью по 5 ватт, итого 15 Ом х 10 Ватт. Резистор ограничивает ток зарядки конденсаторов и после их зарядки можно уже подавать питание напрямую, минуя эти резисторы, что и делает реле.

В сварочном аппарате по схеме Бармалея применена реле WJ115-1A-12VDC-S. Питание катушки реле - 12 вольт DC, коммутируемая нагрузка 20 Ампер, 220 Вольт AC. В самоделках очень распространено применение автомобильных реле на 12 Вольт, 30 Ампер. Однако они не предназначены для коммутации тока до 20 Ампер сетевого напряжения, но, тем не менее, дёшевы, доступны и вполне справляются со своей задачей.

Токоограничивающий резистор лучше ставить обычный проволочный, он выдержит любые перегрузки и более дёшев, чем импортные. Например С5-37 В 10 (20 Ом, 10 Ватт, проволочный). Вместо резисторов можно поставить токоограничивающие конденсаторы, последовательно в цепь переменного напряжения. Например К73-17, 400 Вольт, суммарной ёмкостью 5-10 мкФ. Конденсаторы 3 мкФ, заряжают ёмкость 2000 мкФ, примерно за 5 секунд. Расчёт тока зарядки конденсаторов такой: 1 мкФ ограничивает ток на уровне 70 миллиампер. Получается 3 мкФ на уровне 70х3=210 миллиампер.

Наконец собрал все в едино запустил. Ток по ограничению выставил 165 ампер, теперь оформим сварочный инвертор в хороший корпус. Себестоимость самодельного инвертора примерно 2500 рублей - детали заказывал в интернете.

Провод в перемоточном цехе брал. Еще можно провод снять с телевизоров с размагничивающего контура с кинескопа (это практически готовая вторичка). Дроссель изготовил из E65 , медной полосой шириной 5 мм и толщиной 2 мм - 18 витков. Индуктивность подобрал 84 мкГн путем увеличивания зазора между половинками, он составил 4 мм. Можно и не полосой мотать, а так-же 0.6 мм проволокой, но ее труднее будет уложить. Первичку на трансформаторе можно мотать проводом 1.2 мм, набором из 5 штук 18 витков, но можно и 0.4 мм так же посчитать количество проводов под нужное вам сечение, то есть к примеру 15 штук 0.4 мм 18 витков.

После монтажа и настройки схемы на плате, собрал все воедино. Испытания Бармалей прошел успешно: тройку и четверку электрода тянет спокойно. Ток по ограничению поставил 165 Ампер. Собрал и испытал устройство: Арси .

Обсудить статью СВАРОЧНЫЙ ИНВЕРТОР БАРМАЛЕЙ

Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Система полумост с ШИМ

Блок схема показана ниже:

Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.

В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики , что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.

Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до I max .

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:

Данная схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5U пит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.

Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).

Полный мост с дросселем рассеивания

Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. , при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

В основу силовой части нашего самодельного сварочного полуавтомата инверторного типа взята схема асимметричного моста, или как его еще называют, “косой мост”. Это однотактный прямоходовый преобразователь. Преимущества такой схемы – простота, надежность, минимальное количество деталей, высокая помехоустойчивость. До сих пор многие производители выпускают свои изделия по схеме “косого моста”. Без недостатков тоже не обойтись – это большие импульсные токи от блока питания, меньший, чем в других схемах, КПД, большие токи через силовые транзисторы.

Блок-схема прямоходового преобразователя “косой мост”

Блок схема такого аппарата показана на рисунке:

Транзисторы силовые VT1 и VT2 работают в одной фазе, т.е.одновременно открываются и закрываются, поэтому по сравнению с полным мостом ток через них в два раза больше. Трансформатор TT обеспечивает обратную связь по току.
Узнать больше о всех типах инверторных преобразователей для сварочных аппаратов можно из книги .

Описание схемы инвертора

Полуавтомат сварочный инверторный, работающий в режимах ММА (дуговая сварка) и MAG (сварка специальной проволокой в газовой среде).

Плата управления

На плате управления установлены следующие узлы инвертора: задающий генератор с трансформатором гальванической развязки, блоки обратной связи по току и напряжению, узел управления реле, блок термозащиты, блок “антистик”.

Задающий генератор

Узел регулировки тока (для режима MMA) и задающий генератор (ЗГ) собраны на микросхемах LM358N и UC2845. В качестве ЗГ выбрана UC2845, а не более распространенная UC3845 ввиду более стабильных параметров первой.

Частота генерации зависит от элементов С10 и К19, и рассчитывается по формуле: f = (1800/(R*C))/2, где R и С в килоомах и нанофарадах, частота в килогерцах. В данной схеме частота составляет 49КГц.

Еще один важный параметр – коэффициент заполнения, рассчитываемый по формуле Кзап = t/T. Он не может быть более 50%, и на практике составляет 44-48%. Зависит он от соотношения номиналов С10 и R19. Если конденсатор брать как можно меньше, а резистор – как можно больше, то Кзап будет близок к 50%.

Сформированные ЗГ импульсы подаются на ключ VT5, работающий на трансформатор гальванической развязки T1 (ТГР), намотанный на сердечник EE25, применяемый в электронных блоках запуска люминесцентных ламп (электронных балластах). Все обмотки удаляются и наматываются новые согласно схеме. Вместо транзистора IRF520 можно использовать любой из этой серии – IRF530, 540, 630 и др.

Обратная связь по току

Как упоминалось ранее, для дуговой сварки важно стабильный ток на выходе, для полуавтоматической – неизменное напряжение. На трансформаторе тока TT организована обратная связь по току, он представляет собой ферритовое кольцо типоразмера К 20 х 12 х 5, одетое на нижний (по схеме) вывод первичной обмотки силового трансформатора. В зависимости от тока первичной обмотки T2 ширина импульсов задающего генератора уменьшается или увеличивается, поддерживая выходной ток неизменным.

Обратная связь по напряжению

Сварочный полуавтомат инверторного типа требует ОС по напряжению, для этого в режиме MAG переключателем S1.1 напряжение с выхода устройства подается на узел регулировки выходного напряжения, собранного на элементах R55, D18, U2. Мощный резистор К50 задает начальный ток. А контактами S1.2 ключ на транзисторе VT1 закорачивает на максимум тока регулятор R2, и ключ VT3 отключает режим “антистик” (отключение ЗГ при залипании электрода).

Блок термозащиты

Самодельный сварочный полуавтомат имеет в составе схему защиты от перегрева: это обеспечивает узел на транзисторах VT6, VT7. Датчики температуры на 75 град.С (их два, нормально замкнутые, соединены последовательно) установлены на радиатор выходных диодов и на один из радиаторов силовых транзисторов. При превышении температуры транзистор VT6 закорачивает на землю вывод 1 UC2845 и срывает генерацию импульсов.

Узел управления реле

Данный блок собран на микросхеме DD1 CD4069UB (аналог 561ЛН2) и транзисторе VT14 BC640. Эти элементы обеспечивают следующий режим работы: при нажатии на кнопку сразу включается реле клапана газа, примерно через секунду транзистор VT17 позволяет запуститься генератору и одновременно включается реле протяжного механизма.

Непосредственно реле, управляющие “протяжкой” и клапаном газа, а также вентиляторы питаются от стабилизатора на МС7812, смонтированном на плате управления.

Силовой блок на транзисторах HGTG30N60A4

C выхода ТГР импульсы, предварительно сформированные драйверами на транзисторах VT9 VT10, подаются на силовые ключи VT11, МЕ12. Параллельно выводам коллектор-эмиттер этих транзисторов подключены “снабберы” – цепочки из элементов С24, D47, R57 и C26, D44, R59, служащие для удержания мощных транзисторов в области допустимых значений. В непосредственной близости от ключей установлен конденсатор С28, собранный из 4-ёх емкостей 1мк х 630v. Стабилитроны Z7, Z8 необходимы для ограничения напряжения на затворах ключей на уровне 16 вольт. Каждый транзистор установлен на радиатор от компьютерного процессора с вентилятором.

Силовой трансформатор и выпрямительные диоды

Основной элемент схемы сварочного полуавтомата – мощный выходной трансформатор T2. Он собран на двух сердечниках E70, материал N87 фирмы EPCOS.

Расчет сварочного трансформатора

Витки первичной обмотки рассчитаны по формуле: N = (Uпит * tимп)/(Bдоп * Sсеч),
где Uпит = 320B – максимальное напряжение питания;
tимп = ((1000/f)/2)*К – длительность импульса, К = (Кзап*2)/100 = (0,45*2)/100 = 0,9 tимп = ((1000/49)/2)*0,9 = 9,2;
Вдоп = 0,25 – допустимая индукция для материала сердечника;
Sсеч = 1400 – сечение сердечника.
N = (320 * 9.2)/(0,25 * 1400) = 8.4, округляем до 9 витков.
Отношение витков вторички к первичке должно быть примерно 1/3, т.е. мотаем 3 витка вторичной обмотки.

Силовой трансформатор можно мотать и на другом типоразмере, расчет витков осуществляется по приведенной выше формуле. Например, для сердечника 2 х Е80 при f = 49Khz витков в первичке: 16, вторичке: 5.

Выбор сечения проводов первичной и вторичной обмоток, намотка трансформатора

Сечение проводов выбираем из расчета 1мм.кв = 10А выходного тока. Данный аппарат должен выдавать в нагрузке примерно 190А, поэтому берем сечение вторички 19мм.кв (жгут из 61 провода диаметром 0,63мм). Сечение первички выбирается в 3 раза меньше, т.е. 6мм.кв. (жгут из 20 проводов диаметром 0,63мм). Сечение провода в зависимости от его диаметра рассчитывается как: S = D²/1,27 где D – диаметр провода.

Намотка производится на каркас из текстолита 1мм, без боковых щечек. Каркас одет на деревянную оправку по размерам сердечника. Мотается первичная обмотка (все витки в один слой). Затем 5 слоев плотной трансформаторной бумаги, наверх – вторичная обмотка. Витки сжаты пластмассовыми стяжками. Затем каркас с обмотками снимается с оправки и пропитывается лаком в вакуумной камере. Камера была сделан из литровой банки с плотной крышкой и выведенным шлангом, одетым на всасывающую трубку компрессора от холодильника (можно просто опустить транс в лак на сутки, думаю, тоже пропитается).

Сварочный инвертор – это достаточно популярный аппарат, который является необходимым и в домашнем хозяйстве, и на промышленном предприятии. Это не удивительно, ведь те источники питания, которыми пользовались раньше (преобразователи, трансформаторы, выпрямители), обладали многими недостатками. Среди них можно назвать массу и габариты, большую энергоемкость, но маленький диапазон регулирования режима сварки и низкую частоту преобразования. Сделав своими руками сварочный инвертор на тиристорах, вы получите мощный блок питания для необходимых работ. Также это поможет существенно сэкономить вам средства, хотя все равно потребует определенных трудовых и материальных затрат.

Сварочный инвертор: особенности и функции аппарата

Работа инвертора заключается в том, чтобы преобразовывать переменный сетевой ток в его постоянный высокочастотный аналог.

Это происходит в несколько этапов. К выпрямительному блоку из сети идет ток. Там, после трансформации, напряжение из переменного становится постоянным. А инвертор производит обратное преобразование, то есть поступающее постоянное напряжение снова становится переменным, но с уже более высокой частотой. После этого напряжение понижается трансформатором, через выходной выпрямитель происходит модификация этого параметра в высокочастотное постоянное напряжение.

Конструкция сварочного инвертора и его особенности

Благодаря тому что в конструкции аппарата отсутствуют тяжелые детали, он является очень компактным и легким. В нее входят следующие составляющие:

Устройство простого инвертора с перекрестными связями.

  • инвертор;
  • сетевой и выходной выпрямители;
  • дроссель;
  • высокочастотный трансформатор.

Даже начинающие сварщики могут работать с такими аппаратами. Их применяют как в быту, так и в строительной сфере или в автосервисах. Благодаря тому что присутствует регулировка рабочих режимов, варить можно и тонкие, и толстые металлы. А повышенные условия горения дуги и формирования сварного шва дают вам возможность варить сварочными инверторами любые сплавы, черные и цветные металлы, используя все возможные технологии их сварки.

Преимущества использования инвертора

В области сварного оборудования такие аппараты пользуются особым спросом из-за множества своих преимуществ и достоинств. Сделав инвертор своими руками, вы получите:

  • возможность варить сложные цветные металлы и конструкционные стали;
  • защиту от перегревов, колебаний сетевого напряжения, перегрузов по току;
  • высокую стабильность сварного тока даже при том, что напряжение может колебаться в сети;
  • качественно сформированный шов;
  • при сварке практически не будет разбрызгивания;
  • горение дуги будет стабилизированным в заданном ключе, даже если наблюдается внешнее неблагоприятное воздействие;
  • многие другие полезные в работе функции.

Схемы инвертора своими руками

Взяв за основу то, как строится схема и как управляется сам процесс инверторного преобразования, выделяют несколько видов аппаратов, которые являются самыми распространенными в использовании. Варианты полного моста и полумоста относятся к двум двухтактным схемам, а «косой» мост – к однотактной. Схема полного моста, которую называют двухтактной, работает с двухполярными импульсами. Они подаются на ключевые транзисторы (которые являются парными), а те запирают и открывают электрическую цепь.

Схема инвертора “косой” мост.

Полумостовая схема будет отличаться от предыдущего варианта тем, что потребление тока у нее повышенное. Как ключи выступают транзисторы, работающие по той же двухтактной модели. На каждый из них подается половина входного напряжения сети. Мощность инвертора, в сравнении по току с полным мостом, составляет половину значения. Подобная схема имеет свои преимущества в маломощных устройствах. К тому же можно использовать группу транзисторов, а не один очень мощный.

Последний вариант – «косой» мост. Это инверторы, которые работают по однотактному принципу. Тут вы будете иметь дело с однополярными импульсами. Одновременное открытие транзисторных ключей исключит возможность короткого замыкания. Но среди недостатков этой схемы выделяют подмагничивание магнитопровода трансформатора.

Посмотрите на одну из стандартных схем инвертора. Это конструкция по проекту Ю.Негуляева. Чтобы собрать такой аппарат в домашних условиях, потребуется ваше желание, готовность к работе и необходимая элементная база, которую вы сможете либо найти на радиорынке, либо выпаять из старой бытовой техники.

Инструкция по сборке аппарата

Стандартная схема инвертора по проекту Ю.Негуляева

Возьмите 6-миллиметровую плиту из дюралюминия. Присоедините к ней все отдающие тепло проводники и провода. Учтите, что здесь провод не нужно опоясывать термоизолирующим материалом. Используя старую схему (к примеру, компьютера), вам не придется отдельно искать транзисторы и тиристоры.

Далее подготовьте специальный высокомощный вентилятор (вы можете воспользоваться даже автомобильным радиатором). Он будет обдувать все, включая резонансный дроссель. Не забудьте прижать последний к вашей основе с помощью прокладочного уплотнителя.

Для изготовления самого дроссельного прибора возьмите шесть медных сердечников. Их можно найти на рынке или сделать самому из деталей ненужного старого телевизора. Прижмите диоды к основанию схемы, а потом присоедините к ним стабилизаторы напряжения и изоляционные уплотнители.

Ставя трансформатор, заизолируйте проводниковые пучки с помощью изоленты или фторопластовой полосы. Разведите проводники в разные стороны, чтобы они не контачили и не вызывали сбоев в работе. На полевом транзисторе понадобится провести монтаж силового поля, чтобы продлить работоспособность вашего инвертора. Для этого возьмите медный провод 2-миллиметрового сечения. Залужив его, обмотайте в несколько слоев обычной ниткой. Так вы защитите ваш проводник от разных повреждений и при пайке, и при сварке. Чтобы закрепить монтаж, используйте изолирующие пяточки. Так вы еще и перенесете на них нагрузку с транзисторов.

Трансформатор является необходимым элементом любого сварочного источника. Он понижает напряжение сети до уровня напряжения дуги, а также осуществляет гальваническую развязку сети и сварочной цепи. Известно, что размеры трансформатора определяются его рабочей частотой, а также качеством магнитного материала сердечника.

Примечание.

При понижении частоты габариты трансформатора возрастают, а при повышении – уменьшаются.

Трансформаторы классических источников работают на относительно низкой частоте сети. Поэтому вес и габариты этих источников в основном определялись массой и объемом сварочного трансформатора.

В последнее время были разработаны различные высококачественные магнитные материалы, позволяющие несколько улучшить массогабаритные параметры трансформаторов и сварочных источников. Однако существенного улучшение этих параметров можно добиться только за счет увеличения рабочей частоты трансформаторов. Так как частота сетевого напряжения является стандартом и не может быть изменена, то повысить рабочую частоту трансформатора можно, используя специальный электронный преобразователь.

Блок-схема инверторного сварочного источника

Упрощенная блок-схема инверторного сварочного источника (ИСИ) изображена на рис. 1 . Рассмотрим схему. Сетевое напряжение выпрямляется и сглаживается, а затем подается на электронный преобразователь. Он преобразует постоянное напряжение в переменное высокой частоты. Переменное напряжение высокой частоты трансформируется при помощи малогабаритного высокочастотного трансформатора, затем выпрямляется и подается в сварочную цепь.

Типы трансформаторов

Работа электронного преобразователя тесно связана с циклами перемагничивания трансформатора. Так как ферромагнитный материал сердечника трансформатора обладает нелинейностью и насыщается, то индукция в сердечнике трансформатора может расти лишь до какого-то максимального значения Вm.

После достижения этого значения сердечник необходимо размагнитить до нуля или перемагнитить в обратном направлении до значения – Вm. Энергия может передаваться через трансформатор:

  • в цикле намагничивания;
  • в цикле перемагничивания;
  • в обоих циклах.

Определение.

Преобразователи, обеспечивающие передачу энергии в одном цикле перемагничивания трансформатора, называются однотактными .

Соответственно, преобразователи, обеспечивающие передачу энергии в обоих циклах перемагничивания трансформатора, называются двухтактными .

Однотактный прямоходовый преобразователь

Преимущества однотактных преобразователей. Однотактные преобразователи получили наибольшее распространение в дешевых и маломощных инверторных сварочных источниках, рассчитанных на работу от однофазной сети. В условиях резко переменной нагрузки, каковой является сварочная дуга, однотактные преобразователи выгодно отличаются от различных двухтактных преобразователей:

  • они не требуют симметрирования;
  • они не подвержены такой болезни, как сквозные токи.

Следовательно, для управления этим преобразователем, требуется более простая схема управления, по сравнению с той, которая потребуется для двухтактного преобразователя.

Классификация однотактных преобразователей. По способу передачи энергии в нагрузку, однотактные преобразователи делятся на две группы: прямоходовые и обратноходовые (рис. 2 ). В прямоходовых преобразователях энергия в нагрузку передается в момент замкнутого состояния, а в обратноходовых преобразователях - в момент разомкнутого состояния ключевого транзистора VT. При этом в обратноходовом преобразователе, энергия запасается в индуктивности трансформатора Т во время замкнутого состояния ключа и ток ключа имеет форму треугольника с нарастающим фронтом и крутым срезом.

Примечание.

При выборе типа преобразователя ИСИ между прямоходовым и обратноходовым, предпочтение отдается прямоходовому однотактному преобразователю.

Ведь не смотря на его большую сложность, прямоходовой преобразователь, в отличие от обратноходового, имеет большую удельную мощность . Это объясняется тем, что в обратноходовом преобразователе через ключевой транзистор протекает ток треугольной формы, а в прямоходовом - прямоугольной. Следовательно, при одном и том же максимальном токе ключа, среднее значение тока у прямоходового преобразователя получается в два раза выше.

Основными достоинствами обратноходового преобразователя является:

  • отсутствие дросселя в выпрямителе;
  • возможность групповой стабилизации нескольких напряжений.

Эти достоинства обеспечивают преимущество обратноходовым преобразователям в различных маломощных применениях, каковыми являются источники питания различной бытовой теле- и радиоаппаратуры; а также служебные источники питания цепей управления самих сварочных источников.

Трансформатор однотранзисторного прямоходового преобразователя (ОПП) , изображенного на рис. 2, б , имеет специальную размагничивающую обмотку III. Эта обмотка служит для размагничивания сердечника трансформатора Т, который намагничивается во время замкнутого состояния транзистора VT.

В это время напряжение на обмотке III прикладывается к диоду VD3 в запирающей полярности. Благодаря этому размагничивающая обмотка не оказывает никакого влияния на процесс намагничивания.

После закрытия транзистора VT :

  • напряжение на обмотке III меняет свою полярность;
  • диод VD3 отпирается;
  • энергия, накопленная в трансформаторе Т, возвращается в первичный источник питания Uп.

Примечание.

Однако на практике, из-за недостаточной связи между обмотками трансформатора, часть энергии намагничивания не возвращается в первичный источник. Эта энергия обычно рассеивается в транзисторе VT и демпфирующих цепочках (на рис. 2 не показаны), ухудшая общую эффективность и надежность преобразователя.

Косой мост. Указанный недостаток отсутствует в двухтранзисторном прямоходовом преобразователе (ДПП) , который зачастую называют «косой мост» (рис. 3, а ). В этом преобразователе (благодаря введению дополнительного транзистора и диода) в качестве размагничивающей обмотки используется первичная обмотка трансформатора. Так как эта обмотка сама с собою полностью связана, то проблемы не полного возврата энергии намагничивания полностью исключаются.

Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.

Общей особенностью всех однотактных преобразователей является то, что их трансформаторы работают в условиях с односторонним намагничивантем.

Магнитная индукция В (в трансформаторе с односторонним намагничиванием) может изменяется только в пределах от максимальной Вm до остаточной Вr, описывая частную петлю гистерезиса.

Когда транзисторы VT1, VT2 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в прямом направлении (участок а-b на рис. 3 , б).

Когда транзисторы VT1, VT2 заперты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD0. В этот момент под действием ЭДС обмотки І, открываются диоды VD1, VD2, и через них протекает ток размагничивания сердечника трансформатора в обратном направлении (участок b-а на рис. 3, б ).

Изменение индукции ∆В в сердечнике происходит практически от Вm до Вr и значительно меньше значения ∆В= 2·Вm, возможного для двухтактного преобразователя. Некоторый прирост ∆В можно получить с помощью введения немагнитного зазора в сердечник. Если сердечник имеет немагнитный зазор δ, то остаточная индукция становится меньше, чем Вr . В случае наличия немагнитного зазора в сердечнике, новое значение остаточной индукции можно найти в точке пересечения прямой, проведенной из начала координат под углом Ѳ, к кривой перемагничивания (точка В1 на рис. 3, б ):

tgѲ= µ 0 ·l c /δ,

где µ 0 магнитная проницаемость;

l c длина средней силовой магнитной линии магнитного сердечника, м;

δ длина немагнитного зазора, м.

Определение.

Магнитная проницаемость – это отношение индукции В к напряженности Н для вакуума (также справедливо и для немагнитного воздушного зазора) и является физической постоянной, численно равной µ 0 =4π·10 -7 Гн/м.

Величину tgѲ можно рассматривать как проводимость немагнитного зазора , приведенную к длине сердечника. Таким образом, введение немагнитного зазора эквивалентно введению отрицательной напряженности магнитного поля:

Н1 = -В1/ tgѲ.

Двухтактный мостовой преобразователь

Достоинства двухтактных преобразователей. Двухтактные преобразователи содержат большее количество элементов и требуют более сложных алгоритмов управления. Однако эти преобразователи обеспечивают меньшую пульсацию входного тока, а также позволяют получить большую выходную мощность и эффективность, при одинаковой мощности дискретных ключевых компонентов.

Схема двухтактного мостового преобразователя. На рис. 4, а изображена схема двухтактного мостового преобразователя. Если сравнивать этот преобразователь с однотактными, то он ближе всего к двухтранзисторному прямоходовому преобразователю (рис. 3 ) . Двухтактный преобразователь легко в него преобразуется, если убрать пару транзисторов и пару диодов, расположенных по диагонали (VT1, VT4, VD2,VD3 или VT2, VT3, VD1, VD4).

Таким образом, двухтактный мостовой преобразователь является комбинацией двух однотактных преобразователей, работающих поочерёдно. При этом энергия в нагрузку передается в течение всего периода работы преобразователя, а индукция в сердечнике трансформатора может меняться от -Вm до +Вm.

Как и в ДПП, диоды VD1-VD4 служат для возврата энергии, накопленной в индуктивности рассеяния Ls трансформатора Т, в первичный источник питания Uп. В качестве этих диодов могут быть использованы внутренние диоды MOSFET.

Принцип действия. Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.

Примечание.

Общей особенностью двухтактных преобразователей является то, что их трансформаторы работают в условиях с симметричным перемагничиванием.

Магнитная индукция В, в сердечнике трансформатора с симметричным перемагничиванием, может изменяется в пределах от отрицательно -Вm до положительной +Вm максимальной индукции.

В каждом полупериоде работы ДМП открыты два ключа, расположенные по диагонали. В паузе все транзисторы преобразователя обычно закрыты, хотя существуют режимы управления, когда некоторые транзисторы преобразователя остаются открытыми и в паузе.

Сосредоточимся на режиме управления, согласно которого в паузе все транзисторы ДМП закрыты.

Когда транзисторы VT1, VT4 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в условном обратном направлении (участок b-а на рис. 4, б ).

В паузе, когда транзисторы VT1, VT4 закрыты, ток в нагрузке поддерживается за счет энергии, запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент одна из вторичных обмоток (IIа или IIb) трансформатора Т замкнута накоротко через открытый диод VD7 и один из выпрямительных диодов (VD5 или VD6). В результате этого индукция в сердечнике трансформатора практически не меняется.

После завершения паузы открываются транзисторы VT2, VT3 преобразователя, и энергия источника питания Uп через трансформатор Т передается в нагрузку.

При этом сердечник трансформатора намагничивается в условном прямом направлении (участок а-b на рис. 4 ). В паузе, когда транзисторы VT2, VT3 закрыты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент индукция в сердечнике трансформатора практически не меняется и фиксируется на достигнутом положительном уровне.

Примечание.

Из-за фиксации индукций в паузах, сердечник трансформатора Т способен перемагничиваться только в моменты открытого состояния диагонально расположенных транзисторов.

Чтобы в этих условиях избежать одностороннего насыщения необходимо обеспечить равное время открытого состояния транзисторов, а также симметричность силовой схемы преобразователя.



Понравилась статья? Поделитесь ей