Контакты

Arduino mega 2560 таймеры. AVR. Учебный курс. Таймеры. Таймеры на Arduino

В последнее время все больше и больше начинающих сталкиваются с проблемой освоения Таймеров/Счетчиков (далее Т/С) на этапе изучения микроконтроллеров. В данной статье я постараюсь развеять страхи перед данными модулями и доступно объяснить, как и с чем употребляют те самые Т/С.

За основу мы возьмем очень популярную среди разработчиков устройств на МК книгу, автором которой является А.В. Евстифеев. По ссылкам в конце статьи Вы сможете найти проект в и проект в . В этой статье мы разберем работу 8-ми битного Т/С Т2, который входит в состав Т/С МК Atmega8.

Итак, что же такое Таймер/Счетчик? Т/С - это один из модулей МК AVR с помощью которого можно отмерять определенные промежутки времени, организовать ШИМ и многие другие задачи. В зависимости от модели МК, количество Т/С может составлять 4 и более. Пример тому - МК Atmega640х, 1280х/1281х, 2560х/2561х, которые содержат на своем борту 6 Т/С: два 8-ми битных и четыре 16-ти битных. МК Atmega8 содержит в себе три Т/С: Т0 и Т2 с разрядностью 8 бит, Т1 с разрядностью 16 бит.

Давайте подробнее рассмотрим Т/С Т2 микроконтроллера Atmega8.

Этот таймер может работать в нескольких режимах: Normal, Phase correct PWM, CTC (сброс при совпадении), Fast PWM. Подробнее о каждом режиме Вы можете прочитать в книге.

Данный Т/С состоит из регистра управления, счетного регистра, регистра сравнения, регистра состояния асинхронного режима. Структурная схема Т2 приведена на рис.1

Рассмотрим в теории как же работает данный модуль. Чтобы для начала Вам было понятнее, мы не будем рассматривать все лишние примочки таймера и рассмотрим самый обычный его режим - NORMAL. Для себя определим что МК тактируется от внутреннего RC-генератора с частотой 1МГц и таймер настроен на работу в режиме NORMAL.

Тактовые импульсы поступают на вход clk i\o и попадают в предделитель таймера. Предделитель может быть настроен, по Вашим потребностям, на прямой проход тактовых импульсов или делить входящие импульсы, пропуская только их определенную часть. Поделить входящие импульсы можно на /8, /64, /256, /1024. Так как у нас Т\С может работать в асинхронном режиме, то при включении его в этот режим количество предделителей существенно вырастает, но мы их рассматривать пока не будем. С предделителя тактовые импульсы поступают в блок управления и уже с него попадают в счетный регистр. Счетный регистр в свою очередь совершает инкремент на каждый входящий импульс. Счетный регистр Т2 8-ми битный, поэтому он может считать только до 255. Когда наступает переполнение счетного регистра, он сбрасывается в 0 и в этом же такте начинает считать заново. Так же в момент переполнения счетного регистра устанавливается флаг TOV2 (флаг прерывания по переполнению) регистра TIFR.

Теперь, раз уж мы затронули такие слова, как РЕГИСТР, самое время с ними познакомится. Для начала мы затронем только те регистры, с которыми будем непосредственно работать, дабы не забивать мозг лишней информацией.

TCNT2 - счетный регистр, о его работе мы уже говорили.

TCCR2 - регистр управления таймером.

TIMSK - регистр маски прерываний(в Atmega8 этот регистр является единственным для всех таймеров).

TIFR - регистр флагов прерываний(в Atmega8 этот регистр является единственным для всех таймеров).

А теперь о каждом подробно:

Регистр управления TCCR2. Содержимое этого регистра вы можете посмотреть на рис.2.


рис.2

Биты 0-2 отвечают за тактирование таймера. Установка определенных комбинаций в этих битах настраивает предделитель данного таймера. Если все три бита сброшены - таймер выключен.

Биты 3,6 отвечают за режим работы таймера.

Биты 4,5 нужны для настройки поведения вывода ОСn (проще говоря, используются при настройке ШИМ)

И последний бит этого регистра - бит 7. С его помощью мы можем принудительно изменять состояние вывода ОСn.

Регистр маски прерываний - TIMSK. Его мы видим на рисунке №3

Из этого регистра нас интересуют только два последних бита, биты 6 и 7. Этими битами мы разрешаем работу прерываний.

Бит 6, если в него записать единицу, разрешает прерывание по событию "Переполнение Т\С Т2"

Бит 7, если в него записать еди ницу, разрешает прерывание по событию "Совпадение счетного регистра с регистром сравнения"

Регистр флагов прерываний TIFR. Его мы видим на рисунке №4

рис.4

В этом регистре нас так же интересуют два последних бита: биты 6 и 7.

Бит 6 - флаг, устанавливается по событию "Переполнение Т\С Т2"
Бит 7 - флаг, устанавливается по событию "Совпадение счетного регистра с регистром сравнения"

Эти биты сбрасываются автоматически при выходе из обработчика прерывания, но для надежности их можно сбрасывать самостоятельно, сбрасывая эти биты в "0".

Остальные биты регистров TIMSK и TIFR используются Т\С Т0 и Т1. Как вы уже заметили, у битов этих регистров даже названия совпадают, за исключением цифры в конце названия, которая и указывает к какому таймеру данный бит применИм.

Осталось рассмотреть две несложные таблички, а именно: таблица, в которой описано управление тактовым сигналом (рис. 6), и таблица, в которой описано, как в общем настроить таймер (рис.5).

О том, что находится в этих таблицах, я писал выше, однако привожу Вам их для наглядности.

Вот мы и закончили с теорией, и пора приступить к практической части. Сразу оговорюсь.

ЧАСЫ, КОТОРЫЕ ПОЛУЧАТСЯ В ХОДЕ ИЗУЧЕНИЯ ДАННОЙ СТАТЬИ, НЕ ОБЛАДАЮТ ВЫСОКОЙ ТОЧНОСТЬЮ. ДАННАЯ СТАТЬЯ ОРИЕНТИРОВАННА НА ОБЩИЕ ПРИНЦИПЫ РАБОТЫ С ТАЙМЕРАМИ.

Открываем Studio 6, создаем проект и выбираем Atmega8.

В самом начале указываем частоту тактирования и подключаем нужные нам для работы библиотеки

< avr/io.h > #include < avr/interrupt.h >

В первой строчке мы указываем частоту. Это необходимо для того, чтобы компилятор нас лучше понимал, если вдруг мы захотим использовать функции _delay_().

Во второй строчке кода подключается библиотека с общим описанием регистров нашего МК. Так же в ней всем регистрам присвоены читабельные имена.

В третьей строке подключается библиотека для работы с векторами прерываний.

TIMSK |= (1< < TOIE2); TCCR2 |= (1< < CS22)|(1< < CS20); SREG |= (1< < 7);

На этом настройка нашего таймера закончена. Давайте подробнее рассмотрим последние три строки кода.

В первой строке мы разрешили прерывания по событию "Переполнение таймера\счетчика Т2"

И в третьей строкой мы глобально разрешили прерывания. Это можно было также написать следующим образом:

Asm("sei");

Остается добавить обработчик прерывания и код наших часов реального времени.

ISR (TIMER2_OVF_vect) { takt++; if (takt>=4){sek++; takt=0x00;} if (sek>=60) {min++; sek=0x00;} if (min>=60) {hour++; min=0x00;} if (hour>=24) {hour=0х00}; }

В коде, который находится в обработчике прерывания, нет ничего сложного и нового для Вас. Внимание обратим только на переменную takt и волшебную цифру "4". Откуда взялась эта цифра? Давайте рассмотрим подробно этот момент.

Мы знаем, что наш МК работает от внутреннего генератора с частотой 1МГц, таймер тактируется с предделителем \1024, считать наш таймер может до 255. Зная эти параметры мы можем посчитать сколько переполнений он совершит за 1 секунду

1 000 000 \ 1024 \ 256 = 3,814697.....

Ну, а так как мы учимся работать с таймерами и не ставили цель получить суперточный ход часов, мы округляем наш результат и получаем "4". Т.е. за 1 секунду таймер переполнится ~4 раза.

Почему мы делили на 256 если таймер считает только до 255? Потому что "0" это тоже число. Думаю, здесь все понятно.

Не забываем, что все переменные нужно объявить как глобальные.

Вот весь листинг программы которая у нас получилась.

#define F_CPU 1000000UL #include < avr/io.h > #include < avr/interrupt.h > unsigned char takt = 0; unsigned char sek = 0; unsigned char min=0; unsigned char hour=0; ISR (TIMER2_OVF_vect) { takt++; if (takt>=4){sek++; takt=0x00;} if (sek>=60) {min++; sek=0x00;} if (min>=60) {hour++; min=0x00;} if (hour>=24) {hour=0х00}; } int main(void) { TIMSK |= (1< < TOIE2); TCCR2 |= (1< < CS22)|(1< < CS20); SREG |= (1< < 7); while(1) { } }

А как же вывод информации пользователю? А тут кому как нравится. Можете использовать семисегментные индикаторы, графические или знакогенерирующие дисплеи и т.д.

В архиве Вы найдете проект с выводом информации на дисплей от nokia5110, проект в Proteus 7 и все нужные файлы и библиотеки для работы.

Обращаю внимание на то, что библиотека LCD_5110 для работы с дисплеем написана участником форума и предоставлена с его разрешения.

С учетом всего сказанного напишем программу, переключающую светодиод. В данном случае она будет это делать по событию переполнения таймера‑счетчика Timer 1 (вектор у нас обозначен: TIM1_OVF). Так как счетчик 16‑разрядный, то событие переполнения будет возникать при каждом 65 536‑м импульсе входной частоты. Если мы зададим коэффициент деления тактовой частоты на входе Timer 1 равным 64, то при 4 МГц частоты генератора мы получим примерно 1 Гц: 4 000 000/64/65 536 = 0,953674 Гц.

Это не совсем то, что нам требуется, и к тому же частота неточно равна одному герцу. Для того чтобы светодиод переключался точно раз в полсекунды (т. е. период его был равен секунде), программу придется немного усложнить, загружая каждый раз в счетные регистры определенное значение, которое рассчитывается просто: если период одного тактового импульса таймера равен 16 мкс (частота 4 000 000/64), то для получения 500 000 микросекунд надо отсчитать таких импульсов 31 250. Так как счетчик суммирующий, а прерывание возникает при достижении числа 65 536, то нужно предварительно загружать в него необходимое число 65 536 – 31250 = 34 286.

Это не единственный способ, но наиболее универсальный, годящийся для всех таймеров. Кстати, именно таким способом реализован отсчет времени в Arduino (см. главу 21 ). Иной способ – использовать прерывание по достижению определенного числа, загруженного в регистр сравнения А или В . Как это делается, мы увидим далее в этой главе. Для того чтобы осуществить само переключение из красного в зеленый, нам придется поступить как раньше, т. е. по каждому событию переполнения перебрасывать два бита в регистре PortD .

Полностью программа тогда будет выглядеть так:

Я не буду комментировать подробно каждый оператор, т. к. это заняло бы слишком много места. После выполнения всех команд начальной установки МК зацикливается, но бесконечный цикл будет прерываться возникновением прерывания – здесь все аналогично операционной системе Windows, которая также представляет собой бесконечный цикл ожидания событий. Как вы узнаете из последующих глав, в Arduino такой цикл – одна из главных составляющих любой программы, как раз потому что прерывания там почти не используются. Внутрь бесконечного цикла здесь можно поставить знакомую команду sleep , без дополнительных настроек режима энергопотребления она будет экономить около 30 % питания. А вот сэкономить еще больше просто так не получится, поскольку придется останавливать процессорное ядро, и таймер перестанет работать.

Заметки на полях

Кстати, а как остановить запущенный таймер, если это потребуется? Очень просто: если обнулить регистр TCCR1B (тот, в котором задается коэффициент деления тактовой частоты), то таймер остановится. Чтобы запустить его опять с коэффициентом 1/64, нужно снова записать в этот регистр значение 0b00000011.

Обратите внимание, что оператор reti (окончание обработки прерывания) при обработке прерывания таймера встречается дважды – это вполне нормальный прием, когда подпрограмма разветвляется. Можно, конечно, и пометить последний оператор reti меткой, и тогда текст процедуры стал бы неотличим от первого варианта, но так будет корректнее.

Обратите также внимание на форму записи ldi temp, (1 << TOIE1) . Поскольку бит, обозначаемый как TOIE1, в регистре TIMSK имеет номер 7, то эта запись эквивалентна записи ldi temp,0b10000000 – можно писать и так, и так, и еще кучей разных способов. Например, для запуска таймера с коэффициентом 1/64 требуется, как видно из текста программы, установить младшие два бита регистра TCCR1B. Здесь мы устанавливаем их в temp напрямую, но поскольку эти биты называются CS11 и CS10, то можно записать так:

ldi temp, (1 << CS11) I (1 << CS10)

или даже так:

ldi temp, (3 << CS10)

Подробно этот способ записи приведен в описании AVR‑ассемблера на сайте Atmel .

Подробности

В этой программе есть один тонкий момент, связанный с загрузкой счетных регистров таймера. При чтении и записи 16‑разрядных регистров Timer 1 их содержимое может измениться в промежутке между чтением или записью отдельных 8‑разрядных «половинок» (ведь, например, в данном случае таймер продолжает считать, пока идет обработка прерывания). Потому в 16‑разрядных таймерах AVR предусмотрен специальный механизм чтения и записи таких регистров. При записи первым загружается значение старшего байта, которое автоматически помещается в некий (недоступный для программиста) буферный регистр. Затем, когда поступает команда на запись младшего байта, оба значения объединяются, и запись производится одновременно в обе «половинки» 16‑разрядного регистра. Наоборот, при чтении первым должен быть прочитан младший байт, при этом значение старшего автоматически фиксируется помещением в тот же буферный регистр, и при следующей операции чтения старшего байта его значение извлекается оттуда. Таким образом и при чтении значения оба байта соответствуют одному и тому же моменту времени.

Когда у меня возникло желание вести разработку под Arduino, я столкнулся с несколькими проблемами:
  • Выбор модели из списка доступных
  • Попытки понять, чего мне понадобится кроме самой платформы
  • Установка и настройка среды разработки
  • Поиск и разбор тестовых примеров
  • «Разборки» с экраном
  • «Разборки» с процессором

Для решения этих проблем я просмотрел и прочитал довольно много разных источников и в этой статье я постараюсь сделать обзор найденных мною решений и методов их поиска.

Выбор платформы

Перед началом программирования под железяку требуется в начале ее купить. И тут я столкнулся с первой проблемой: оказалось, что разных *дуин довольно много. Тут есть и широкая линейка Arduino и примерно такая же широкая Freeduino и другие аналоги. Как оказалось, большой разницы, что именно брать, нет. То есть одни из этих устройств чуть быстрее, другие чуть медленнее, одни дешевле, другие - дороже, но основные принципы работы практически не отличаются. Отличия появляются практически только при работе с регистрами процессора и то я далее объясню, как по возможности избежать проблем.

Я выбрал платформу Arduino Leonardo как самую доступную по цене и имеющуюся на тот момент в Интернет магазине, в котором я всё и заказывал. Отличается она от остальной линейки тем, что у нее на борту установлен только один контроллер, который занимается и работой с USB-портом и выполнением тех самых задач, которые мы на наше устройство повесим. У этого есть свои плюсы и минусы, но напороться на них при первоначальном изучении не получится, поэтому забудем о них пока. Оказалось, что она подключается к компьютеру через micro-USB, а не USB-B, как вроде бы большинство других. Это меня несколько удивило, но и обрадовало, потому что я, как владелец современного устройства на Android"е без этого кабеля вообще из дома не выхожу.
Да, питается почти любая *дуино-совместимая железяка несколькими способами, в том числе, от того же кабеля, через который программируется. Также один светодиод почти у всех плат размещен прямо на плате контроллера, что позволяет начать работу с устройством сразу после покупки, даже не имея в руках вообще ничего, кроме совместимого кабеля.

Спектр задач

Я думаю, что прежде, чем взяться за как таковое написание чего-то под железяку, интересно понять, что на ней можно реализовать. С Ардуино реализовать получится почти что угодно. Системы автоматизации, идеи для «умного дома», контроллеры управления чем-нибудь полезным, «мозги» роботов… Вариантов просто уйма. И сильно помогает в этом направлении довольно широкий набор модулей расширения, чрезвычайно просто подключаемых к плате контроллера. Список их довольно длинный и многообещающий, и ищутся они в Интернете по слову shield. Из всех этих устройств я для себя посчитал самым полезным LCD экран с базовым набором кнопок, без которого по моему скромному мнению заниматься какими бы то ни было тренировочными проектами совершенно неинтересно. Экран брался отсюда , еще там есть его описание, а также с приведенной страницы ведут ссылки на официальный сайт производителя.

Постановка задачи

Я как-то привык при получении в свои руки нового инструмента сразу ставить себе какую-нибудь в меру сложную и абсолютно ненужную задачу, браво ее решать, после чего откладывать исходник в сторонку и только потом браться за что-нибудь по настоящему сложное и полезное. Сейчас у меня под рукой был очень похожий на составную часть мины из какого-нибудь голливудского кинофильма экран со всеми необходимыми кнопками, с которым надо было научиться работать, а также очень хотелось освоить работу с прерываниями (иначе в чем смысл использования контроллера?) поэтому первым же, что пришло в голову, оказалось написать часы. А поскольку размер экрана позволял, то еще и с датой.

Первые шаги

Вот мне наконец приехали все купленные компоненты и я их собрал. Разъем экрана подключился к плате контроллера как родной, плата была подключена к компьютеру… И тут мне сильно помогла вот эта статья. Повторять то же самое я не буду.

Скрытый текст

Единственное скажу, что вспомнив молодость (а точнее первый «проект», собранный во время изучения радиоэлектроники во Дворце пионеров - мультивибратор с двумя светодиодами), я нашел 2 светодиода и поправил приведенный в статье пример и начал мигать ими:).

«Вторые шаги»

Следующим закономерным вопросом для меня стало «как работать с LCD экраном?». Официальная страница устройства любезно предоставила мне ссылки на архив, в котором оказалось 2 библиотеки с замечательными примерами. Только не сказала, что с этим всем делать. Оказалось, что содержимое нужно просто распаковать в папку libraries среды разработки.

После этого можно открывать пример GuessTheNumber.pde и заливать в плату аналогично примеру с мигающим светодиодом. Однако лично у меня после прошивки экран остался равномерно светящимся и без единой буквы. После недолгих поисков проблемы оказалось, что надо было просто подкрутить отверткой единственный имеющийся на плате экрана потенциометр чтобы задать нормальное значение контрастности.

Использованного в примере набора команд в принципе достаточно для простой работы с экраном, но если захочется чего-то большего, то можно открыть исходный текст библиотек LCDKeypad и LiquidCrystal и посмотреть что там есть еще.

Архитектура программы

Основная задача часов - считать время. И делать это они должны точно. Естественно, что без использования механизма прерываний никто не сможет гарантировать, что время считается с достаточной точностью. Поэтому вычисление времени точно нужно оставить им. Всё остальное можно вынести в тело основной программы. А этого самого «остального» у нас довольно много - вся работа с интерфейсом. Можно было бы поступить иначе, создать стек событий, создаваемый в том числе и механизмом обработки прерываний, а обрабатываемый внутри основного приложения, это позволило бы например заниматься обновлением экрана не чаще, чем раз в пол секунды (или по нажатию кнопки) но я посчитал это лишним для такой простой задачи, поскольку кроме перерисовки экрана процессору всё равно заняться нечем. Поэтому всё свободное время программа перечитывает состояние кнопок и перерисовывает экран.
Проблемы, связанные с таким подходом
Периодические изменения экрана
Очень хотелось сделать мигающие двоеточия между часами, минутами и секундами, чтобы как в классических часах они пол секунды горели, а пол - нет. Но поскольку экран перерисовывается всё время, надо было как-то определять в какую половину секунды их рисовать, а в какую - нет. Самым простым оказалось сделать 120 секунд в минуте и рисовать двоеточия каждую нечетную секунду.
Мелькания
При постоянной перерисовки экрана становятся заметны мелькания. Чтобы этого не возникало, имеет смысл не очищать экран, а рисовать новый текст поверх старого. Если сам текст при этом не меняется, то мелькания на экране не будет. Тогда функция перерисовки времени будет выглядеть вот так:
LCDKeypad lcd; void showTime(){ lcd.home(); if (hour<10) lcd.print("0"); // Случай разной длины приходится обрабатывать руками lcd.print(hour,DEC); // английские буквы и цифры ОНО пишет само, русские буквы нужно определять программисту if (second %2) lcd.print(" "); else lcd.print(":"); // вот они где используются, мои 120 секунд в минуте if (minute<10) lcd.print("0"); lcd.print(minute,DEC); if (second %2) lcd.print(" "); else lcd.print(":"); if (second<20) lcd.print("0"); lcd.print(second / 2,DEC); lcd.print(" "); lcd.setCursor(0,1); // переходим в координаты x=0, y=1 то есть в начало второй строки lcd.print(" "); lcd.print(day,DEC); lcd.print(months); // месяцы мне было приятнее нумеровать от 1 до 12, а массив с названиями от 0 до 11 lcd.print(year,DEC); }
Работа с кнопками
Похожая ситуация с кнопками. Нажатая кнопка числится нажатой при каждом прогоне программы, поэтому за одно нажатие может обработаться любое количество раз. Приходится заставлять программу ждать «отжимания» отдельно. Начнем основную программу так:
int lb=0; // переменная хранит старое значение кнопки void loop(){ // main program int cb,rb; // определим 2 переменные, для реально нажатой кнопки и для той, которую будет считать нажатой программа cb=rb=lcd.button(); // в начале можно считать, что это одна и та же кнопка if (rb!=KEYPAD_NONE) showval=1; // переменная указывает, что пока нажата кнопка не надо мигать тому, что настраивается if (cb!=lb) lb=cb; // если состояние кнопки изменилось, запоминаем новое, else cb=KEYPAD_NONE; // иначе говорим программе, что все кнопки давно отпущены.

Работа с таймером

Собственно, чтобы вся работа с таймером состоит из двух важных компонентов:
  • Инициализации механизма прерываний от таймера в удобном для нас режиме
  • Собственно, обработки прерывания
Инициализация таймера
Для того, чтобы начать получать нужные нам прерывания, нужно настроить процессор таким образом, чтобы он начал их генерировать. Для этого нужно установить нужные нам регистры в нужные значения. Какие именно регистры и в какие именно значения нужно устанавливать, нужно смотреть в… даташите на процессор:(. Честно говоря, сильно надеялся, что эту информацию можно будет найти в документации на саму Arduino, но нет, это было бы слишком просто. Мало того, для разных процессоров серии номера битов могут отличаться. И я сам лично натолкнулся на то, что попытка установки битов в соответствие с даташитом на соседний процессор привели к плачевным результатам… Но тем не менее, всё не настолько печально, как может показаться, поскольку для этих битов есть еще и имена, они более-менее общие для разных процессоров. Поэтому использовать цифровые значения мы не будем, только имена.

Для начала вспомним, что в микроконтроллерах AVR таймеров несколько. Нулевой используется для вычисления значений delay() и тому подобных вещей, поэтому его мы использовать не будем. Соответственно, используем первый. Поэтому далее в обозначении регистров часто будет проскакивать единичка, для настройки скажем второго таймера нужно там же поставить двойку.

Вся инициализация таймера должна происходить в процедуре setup(). Состоит она из помещения значений в 4 регистра, TCCR1A, TCCR1B, TIMSK1, OCR1A. Первые 2 из них называются «регистрами A и B управления таймера-счетчика 1». Третий - «регистр маски прерываний таймера/счетчика 1», и последний - «регистр сравнения A счетчика 1».

Команды для установки битов принято использовать следующие (понятное дело, что вариантов много, но чаще всего используются именно эти):
BITE |= (1 << POSITION)
то есть вдвигаем «1» на POSITION бит справо налево и проводим логическое «или» между целевым и полученным байтами. При включении контроллера значения всех этих регистров содержат 0, поэтому о нулях мы просто забываем. Таким образом, после выполнения следующего кода

A=0; A |= (1 << 3)

Значение A станет 8.

Вариантов настройки таймера уйма, но нам нужно добиться от таймера следующего:

  • Чтобы таймер перешел в режим работы CTC (то есть в режим счета со сбросом после совпадения, «Clear Timer on Compare match»), судя по даташиту это достигается установкой битов WGM12:0 = 2, что само по себе означает установить биты со второго по нулевой в значение «2», то есть, «010», команда TCCR1B |= (1 << WGM12) ;
  • Поскольку 16МГц (а именно такая частота у кварцевого резонатора на моей плате) это много, выбрать максимально возможный делитель, 1024 (то есть только каждый 1024-ый такт будет доходить до нашего счетчика), CS12:0=5
  • Сделать так, чтобы прерывание приходило при совпадении с регистром A, для данного счетчика TIMSK1 |= (1 << OCIE1A)
  • Указать при достижении какого именно значения вызывать обработку прерывания, это значение помещается в тот самый регистр A счетчика 1 (целиком его название OCR1A), прерывание по совпадении с которым мы включали предыдущим пунктом.

Как посчитать, до скольки нам нужно проводить вычисления? - Легко, если тактовая частота кварцевого резонатора 16МГц, то при достижении счетчиком значения 16000 прошла бы секунда, если бы коэффициент деления был 1. Так как он 1024, то мы получаем 16000000/1024=15625 в секунду. И всё бы хорошо, но нам нужно получать значения каждые пол секунды, а 15625 на 2 не делится. Значит мы до этого ошиблись и придется взять коэффициент деления поменьше. А следующий по уменьшению у нас 256, что дает 62500 тиков в секунду или 31250 за пол секунды. Счетчик у нас 16-тибитный, поэтому может досчитать до 65536. Иными словами, нам его хватает и на пол секунды и на секунду. Лезем в даташит, потом в исходник и исправляем на CS12:0=4 , а после этого OCR1A = 31249; (как я понял, один такт уходит то ли на на сброс, то ли еще куда, поэтому встречаются советы сбросить еще единичку с полученной цифры).

Обработка прерывания
Синтаксис функции обработки прерывания несколько изменился, сейчас он выглядит так, как в примере ниже. Так что не удивляйтесь, если где-нибудь увидите несколько иное описание имени функции.

Собственно, сейчас оно состоит из зарезервированного слова ISR и указания конкретного прерывания, которое эта функция обрабатывает в скобках. А внутри у этой функции как видите нет ничего фантастического. Даже обязательное RETI как видите за нас автоматом вставляет компилятор.

ISR(TIMER1_COMPA_vect) { digitalWrite(LEDPIN, !digitalRead(LEDPIN)); // LEDPIN=13. Эта строка мигает светодиодом на плате. Удобно и прикольно:) second++; if ((second %2) && lastshowval) { // эта и следующие 7 строк нужны только для того, lastshowval = 0; // чтобы можно было добиться этого забавного эффекта, как на аппаратных часах, showval = 0; // когда в режиме настройки скажем минут, значение настраиваемого параметра мигает } if (!(second %2) && !lastshowval){ // только при отпущенных кнопках, а пока кнопки нажаты, оно просто горит. lastshowval = 1; showval = 1; } if (second>=120) { // опять мои 120 секунд в минуте. Ну а кому сейчас легко? second-=120; minute++; if (minute>=60){ minute-=60; hour++; if (hour>=24){ hour-=24; day++; if (daylarge(day,month,year) // возвращает true если значение дня // больше максимально возможного для этого месяца этого года.) { day=1; month++; if (month>12){ month = 1; year++; } } } } } }

Надеюсь, эта статья будет кому-нибудь полезна, потому что достаточно подробных инструкций на тему работы с прерываниями от таймера на русском языке довольно мало.

С счетчиком итераций главного цикла мы разобрались и выяснили, что для точных временных отсчетов он не годится совершенно — выдержка плавает, да и считать ее сложно. Что делать?

Очевидно, что нужен какой то внешний счетчик, который тикал бы независимо от работы процессора, а процессор мог в любой момент посмотреть что в нем такое натикало. Либо чтобы счетчик выдавал события по переполнению или опустошению — флажок поднимал или прерывание генерил. А проц это прочухает и обработает.

И такой счетчик есть, даже не один — это периферийные таймеры. В AVR их может быть несколько штук да еще с разной разрядностью. В ATmega16 три, в ATmega128 четыре. А в новых МК серии AVR может даже еще больше, не узнавал.

Причем таймер может быть не просто тупым счетчиком, таймер является одним из самых навороченных (в плане альтернативных функций) периферийных девайсов.

Что умееют таймеры

  • Тикать с разной скоростью, подсчитывая время
  • Считать входящие извне импульсы (режим счетчика)
  • Тикать от внешнего кварца на 32768гц
  • Генерировать несколько видов ШИМ сигнала
  • Выдавать прерывания (по полудесятку разных событий) и устанавливать флаги

Разные таймеры имеют разную функциональность и разную разрядность. Это подробней смотреть в даташите.

Источник тиков таймера
Таймер/Счетчик (далее буду звать его Т/С) считает либо тактовые импульсы от встроенного тактового генератора, либо со счетного входа.

Погляди внимательно на распиновку ног ATmega16, видишь там ножки T1 и T0?

Так вот это и есть счетные входы Timer 0 и Timer 1. При соответствующей настройке Т/С будет считать либо передний (перепад с 0-1), либо задний (перепад 1-0) фронт импульсов, пришедших на эти входы.

Главное, чтобы частота входящих импульсов не превышала тактовую частоту процессора, иначе он не успеет обработать импульсы.

Кроме того, Т/С2 способен работать в асинхронном режиме. То есть Т/С считает не тактовые импульсы процессора, не входящие импульсы на ножки, а импульсы своего собственного собственного генератора, работающего от отдельного кварца. Для этого у Т/С2 есть входы TOSC1 и TOSC2, на которые можно повесить кварцевый резонатор.

Зачем это вообще надо? Да хотя бы организовать часы реального времени. Повесил на них часовой кварц на 32768 Гц да считай время — за секунду произойдет 128 переполнений (т.к. Т/С2 восьми разрядный). Так что одно переполнение это 1/128 секунды. Причем на время обработки прерывания по переполнению таймер не останавливается, он также продолжает считать. Так что часы сделать плевое дело!

Предделитель
Если таймер считает импульсы от тактового генератора, или от своего внутреннего, то их еще можно пропустить через предделитель.

То есть еще до попадания в счетный регистр частота импульсов будет делиться. Делить можно на 8, 32, 64, 128, 256, 1024. Так что если повесишь на Т/С2 часовой кварц, да пропустишь через предделитель на 128, то таймер у тебя будет тикать со скоростью один тик в секунду.

Удобно! Также удобно юзать предделитель когда надо просто получить большой интервал, а единственный источник тиков это тактовый генератор процессора на 8Мгц, считать эти мегагерцы задолбаешься, а вот если пропустить через предделитель, на 1024 то все уже куда радужней.

Но тут есть одна особенность, дело в том, что если мы запустим Т/С с каким нибудь зверским предделителем, например на 1024, то первый тик на счетный регистр придет не обязательно через 1024 импульса.

Это зависит от того в каком состоянии находился предделитель, а вдруг он к моменту нашего включения уже досчитал почти до 1024? Значит тик будет сразу же. Предделитель работает все время, вне зависимости от того включен таймер или нет.

Поэтому предделители можно и нужно сбрасывать. Также надо учитывать и то, что предделитель един для всех счетчиков, поэтому сбрасывая его надо учитывать то, что у другого таймера собьется выдержка до следующего тика, причем может сбиться конкретно так.

Например первый таймер работает на выводе 1:64, а второй на выводе 1:1024 предделителя. У второго почти дотикало в предделителе до 1024 и вот вот должен быть тик таймера, но тут ты взял и сбросил предделитель, чтобы запустить первый таймер точно с нуля. Что произойдет? Правильно, у второго делилка тут же скинется в 0 (предделитель то единый, регистр у него один) и второму таймеру придется ждать еще 1024 такта, чтобы получить таки вожделенный импульс!

А если ты будешь сбрасывать предделитель в цикле, во благо первого таймера, чаще чем раз в 1024 такта, то второй таймер так никогда и не тикнет, а ты будешь убиваться головой об стол, пытаясь понять чего это у тебя второй таймер не работает, хотя должен.

Для сброса предделителей достаточно записать бит PSR10 в регистре SFIOR. Бит PSR10 будет сброшен автоматически на следующем такте.

Счетный регистр
Весь результат мучений, описанных выше, накапливается в счетном регистре TCNTх, где вместо х номер таймера. он может быть как восьмиразрядным, так и шестнадцати разрядным, в таком случае он состоит из двух регистров TCNTxH и TCNTxL — старший и младший байты соответственно.

Причем тут есть подвох, если в восьмиразрядный регистр надо положить число, то нет проблем OUT TCNT0,Rx и никаких гвоздей, то с двухбайтными придется поизвращаться.

А дело все в чем - таймер считает независимо от процессора, поэтому мы можем положить вначале один байт, он начнет считаться, потом второй, и начнется пересчет уже с учетом второго байта.

Чувствуете лажу? Вот! Таймер точное устройство, поэтому грузить его счетные регистры надо одновременно! Но как? А инженеры из Atmel решили проблему просто:
Запись в старший регистр (TCNTxH) ведется вначале в регистр TEMP. Этот регистр чисто служебный, и нам никак недоступен.

Что в итоге получается: Записываем старший байт в регистр TEMP (для нас это один хрен TCNTxH), а затем записываем младший байт. В этот момент, в реальный TCNTxH, заносится ранее записанное нами значение. То есть два байта, старший и младший, записываются одновременно! Менять порядок нельзя! Только так

Выглядит это так:

CLI ; Запрещаем прерывания, в обязательном порядке! OUT TCNT1H,R16 ; Старшей байт записался вначале в TEMP OUT TCNT1L,R17 ; А теперь записалось и в старший и младший! SEI ; Разрешаем прерывания

Зачем запрещать прерывания? Да чтобы после записи первого байта, прога случайно не умчалась не прерывание, а там кто нибудь наш таймер не изнасиловал. Тогда в его регистрах будет не то что мы послали тут (или в прерывании), а черти что. Вот и попробуй потом такую багу отловить! А ведь она может вылезти в самый неподходящий момент, да хрен поймаешь, ведь прерывание это почти случайная величина. Так что такие моменты надо просекать сразу же.

Читается все также, только в обратном порядке. Сначала младший байт (при этом старший пихается в TEMP), потом старший. Это гарантирует то, что мы считаем именно тот байт который был на данный момент в счетном регистре, а не тот который у нас натикал пока мы выковыривали его побайтно из счетного регистра.

Контрольные регистры
Всех функций таймеров я расписывать не буду, а то получится неподьемный трактат, лучше расскажу о основной — счетной, а всякие ШИМ и прочие генераторы будут в другой статье. Так что наберитесь терпения, ну или грызите даташит, тоже полезно.

Итак, главным регистром является TCCRx
Для Т/С0 и Т/С2 это TCCR0 и TCCR2 соответственно, а для Т/С1 это TCCR1B

Нас пока интересуют только первые три бита этого регистра:
CSx2.. CSx0, вместо х подставляется номер таймера.
Они отвечают за установку предделителя и источник тактового сигнала.

У разных таймеров немного по разному, поэтому опишу биты CS02..CS00 только для таймера 0

  • 000 — таймер остановлен
  • 001 — предделитель равен 1, то есть выключен. таймер считает тактовые импульсы
  • 010 — предделитель равен 8, тактовая частота делится на 8
  • 011 — предделитель равен 64, тактовая частота делится на 64
  • 100 — предделитель равен 256, тактовая частота делится на 256
  • 101 — предделитель равен 1024, тактовая частота делится на 1024
  • 110 — тактовые импульсы идут от ножки Т0 на переходе с 1 на 0
  • 111 — тактовые импульсы идут от ножки Т0 на переходе с 0 на 1

Прерывания
У каждого аппаратного события есть прерывание, вот и таймер не исключение. Как только происходит переполнение или еще какое любопытное событие, так сразу же вылазит прерывание.

За прерывания от таймеров отвечают регистры TIMSК, TIFR. А у более крутых AVR, таких как ATMega128, есть еще ETIFR и ETIMSK — своего рода продолжение, так как таймеров там поболее будет.

TIMSK это регистр масок. То есть биты, находящиеся в нем, локально разрешают прерывания. Если бит установлен, значит конкретное прерывание разрешено. Если бит в нуле, значит данное прерывание накрывается тазиком. По дефолту все биты в нуле.

На данный момент нас тут интересуют только прерывания по переполнению. За них отвечают биты

  • TOIE0 — разрешение на прерывание по переполнению таймера 0
  • TOIE1 — разрешение на прерывание по переполнению таймера 1
  • TOIE2 — разрешение на прерывание по переполнению таймера 2

О остальных фичах и прерываниях таймера мы поговорим попозжа, когда будем разбирать ШИМ.

Регистр TIFR это непосредственно флаговый регистр. Когда какое то прерывание срабатывает, то выскакивает там флаг, что у нас есть прерывание. Этот флаг сбрасывается аппаратно когда программа уходит по вектору. Если прерывания запрещены, то флаг так и будет стоять до тех пор пока прерывания не разрешат и программа не уйдет на прерывание.

Чтобы этого не произошло флаг можно сбросить вручную. Для этого в регистре TIFR в него нужно записать 1!

А теперь похимичим
Ну перекроим программу на работу с таймером. Введем программный таймер. Шарманка так и останется, пускай тикает. А мы добавим вторую переменную, тоже на четыре байта:

ORG $010 RETI ; (TIMER1 OVF) Timer/Counter1 Overflow .ORG $012 RJMP Timer0_OV ; (TIMER0 OVF) Timer/Counter0 Overflow .ORG $014 RETI ; (SPI,STC) Serial Transfer Complete

Добавим обработчик прерывания по переполнению таймера 0, в секцию Interrupt. Так как наш тикающий макрос активно работает с регистрами и портит флаги, то надо это дело все сохранить в стеке сначала:

Кстати, давайте создадим еще один макрос, пихающий в стек флаговый регистр SREG и второй — достающий его оттуда.

1 2 3 4 5 6 7 8 9 10 11 12 .MACRO PUSHF PUSH R16 IN R16,SREG PUSH R16 .ENDM .MACRO POPF POP R16 OUT SREG,R16 POP R16 .ENDM

MACRO PUSHF PUSH R16 IN R16,SREG PUSH R16 .ENDM .MACRO POPF POP R16 OUT SREG,R16 POP R16 .ENDM

Как побочный эффект он еще сохраняет и R16, помним об этом:)

1 2 3 4 5 6 7 8 9 10 11 12 13 Timer0_OV: PUSHF PUSH R17 PUSH R18 PUSH R19 INCM TCNT POP R19 POP R18 POP R17 POPF RETI

Timer0_OV: PUSHF PUSH R17 PUSH R18 PUSH R19 INCM TCNT POP R19 POP R18 POP R17 POPF RETI

Теперь инициализация таймера. Добавь ее в секцию инита локальной периферии (Internal Hardware Init).

; Internal Hardware Init ====================================== SETB DDRD,4,R16 ; DDRD.4 = 1 SETB DDRD,5,R16 ; DDRD.5 = 1 SETB DDRD,7,R16 ; DDRD.7 = 1 SETB PORTD,6,R16 ; Вывод PD6 на вход с подтягом CLRB DDRD,6,R16 ; Чтобы считать кнопку SETB TIMSK,TOIE0,R16 ; Разрешаем прерывание таймера OUTI TCCR0,1<

Осталось переписать наш блок сравнения и пересчитать число. Теперь все просто, один тик один такт. Без всяких заморочек с разной длиной кода. Для одной секунды на 8Мгц должно быть сделано 8 миллионов тиков. В хексах это 7A 12 00 с учетом, что младший байт у нас TCNT0, то на наш счетчик остается 7А 12 ну и еще старшие два байта 00 00, их можно не проверять. Маскировать не нужно, таймер мы потом переустановим все равно.

Одна только проблема — младший байт, тот что в таймере. Он тикает каждый такт и проверить его на соответствие будет почти невозможно. Т.к. малейшее несовпадение и условие сравнение выпадет в NoMatch, а подгадать так, чтобы проверка его значения совпала именно с этим тактом… Проще иголку из стога сена вытащить с первой попытки наугад.

Так что точность и в этом случае ограничена — надо успеть проверить значение до того как оно уйдет из диапазона. В данном случае диапазон будет, для простоты, 255 — величина младшего байта, того, что в таймере.

Тогда наша секунда обеспечивается с точностью 8000 000 плюс минус 256 тактов. Не велика погрешность, всего 0,003%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ; Main ========================================================= Main: SBIS PIND,6 ; Если кнопка нажата - переход RJMP BT_Push SETB PORTD,5 ; Зажгем LED2 CLRB PORTD,4 ; Погасим LED1 Next: LDS R16,TCNT ; Грузим числа в регистры LDS R17,TCNT+1 CPI R16,0x12 ; Сравниванем побайтно. Первый байт BRCS NoMatch ; Если меньше -- значит не натикало. CPI R17,0x7A ; Второй байт BRCS NoMatch ; Если меньше -- значит не натикало. ; Если совпало то делаем экшн Match: INVB PORTD,7,R16,R17 ; Инвертировали LED3 ; Теперь надо обнулить счетчик, иначе за эту же итерацию главного цикла; мы сюда попадем еще не один раз -- таймер то не успеет натикать 255 значений, ; чтобы число в первых двух байтах счетчика изменилось и условие сработает. ; Конечно, можно обойти это доп флажком, но проще сбросить счетчик:) CLR R16 ; Нам нужен ноль CLI ; Доступ к многобайтной переменной; одновременно из прерывания и фона; нужен атомарный доступ. Запрет прерываний OUTU TCNT0,R16 ; Ноль в счетный регистр таймера STS TCNT,R16 ; Ноль в первый байт счетчика в RAM STS TCNT+1,R16 ; Ноль в второй байт счетчика в RAM STS TCNT+2,R16 ; Ноль в третий байт счетчика в RAM STS TCNT+3,R16 ; Ноль в первый байт счетчика в RAM SEI ; Разрешаем прерывания снова. ; Не совпало - не делаем:) NoMatch: NOP INCM CCNT ; Счетчик циклов по тикает; Пускай, хоть и не используется. JMP Main BT_Push: SETB PORTD,4 ; Зажгем LED1 CLRB PORTD,5 ; Погасим LED2 RJMP Next ; End Main =====================================================

; Main ========================================================= Main: SBIS PIND,6 ; Если кнопка нажата - переход RJMP BT_Push SETB PORTD,5 ; Зажгем LED2 CLRB PORTD,4 ; Погасим LED1 Next: LDS R16,TCNT ; Грузим числа в регистры LDS R17,TCNT+1 CPI R16,0x12 ; Сравниванем побайтно. Первый байт BRCS NoMatch ; Если меньше -- значит не натикало. CPI R17,0x7A ; Второй байт BRCS NoMatch ; Если меньше -- значит не натикало. ; Если совпало то делаем экшн Match: INVB PORTD,7,R16,R17 ; Инвертировали LED3 ; Теперь надо обнулить счетчик, иначе за эту же итерацию главного цикла; мы сюда попадем еще не один раз -- таймер то не успеет натикать 255 значений, ; чтобы число в первых двух байтах счетчика изменилось и условие сработает. ; Конечно, можно обойти это доп флажком, но проще сбросить счетчик:) CLR R16 ; Нам нужен ноль CLI ; Доступ к многобайтной переменной; одновременно из прерывания и фона; нужен атомарный доступ. Запрет прерываний OUTU TCNT0,R16 ; Ноль в счетный регистр таймера STS TCNT,R16 ; Ноль в первый байт счетчика в RAM STS TCNT+1,R16 ; Ноль в второй байт счетчика в RAM STS TCNT+2,R16 ; Ноль в третий байт счетчика в RAM STS TCNT+3,R16 ; Ноль в первый байт счетчика в RAM SEI ; Разрешаем прерывания снова. ; Не совпало - не делаем:) NoMatch: NOP INCM CCNT ; Счетчик циклов по тикает; Пускай, хоть и не используется. JMP Main BT_Push: SETB PORTD,4 ; Зажгем LED1 CLRB PORTD,5 ; Погасим LED2 RJMP Next ; End Main =====================================================

Вот как это выглядит в работе

А если надо будет помигать вторым диодиком с другим периодом, то мы смело можем влепить в программу еще одну переменную, а в обработчике прерывания таймера инкрементировать сразу две пееременных. Проверяя их по очереди в главном цикле программы.

Можно еще немного оптимизировать процесс проверки. Сделать его более быстрым.

Надо только сделать счет не на повышение, а на понижение. Т.е. загружаем в переменную число и начинаем его декрементировать в прерывании. И там же, в обработчике, проверяем его на ноль. Если ноль, то выставляем в памяти флажок. А наша фоновая программа этот флажок ловит и запускает экшн, попутно переустанавливая выдержку.

А что если надо точней? Ну тут вариант только один — заюзать обработку события прям в обработчике прерывания, а значение в TCNT:TCNT0 каждый раз подстраивать так, чтобы прерывание происходило точно в нужное время.

Прерывания позволяют микроконтроллерам откликаться на события без необходимости постоянно проверять выполнение каких-либо условий, чтобы определить момент, когда произошли важные изменения. В дополнение к возможности подключать источники прерываний к некоторым контактам можно также использовать прерывания, генерируемые таймером.

Аппаратные прерывания

Для демонстрации использования прерываний вернемся вновь к цифровым входам. Часто для определения момента некоторого входного события (например, нажатия кнопки) используется такой код:

if (digitalRead(inputPin) == LOW)

// Выполнить какие-то действия

Этот код постоянно проверяет уровень напряжения на контакте inputPin, и, когда digitalRead возвращает LOW, выполняются какие-то действия, обозначенные комментарием // Выполнить какие-то действия. Это вполне рабочее решение, но что если внутри функции loop требуется выполнить массу других операций? На все эти операции требуется время, поэтому есть вероятность пропустить короткое нажатие на кнопку, пока процессор будет занят чем-то другим. На самом деле пропустить факт нажатия на кнопку почти невозможно, потому что по меркам микроконтроллера она остается нажатой очень долго.

Но как быть с короткими импульсами от датчика, которые могут длиться миллионные доли секунды? Для приема таких событий следует использовать прерывания, определяя функции, которые будут вызываться по этим событиям, независимо от того, чем занят микроконтроллер. Такие прерывания называют аппаратными прерываниями (hardware interrupts).

В Arduino Uno только два контакта связаны с аппаратными прерываниями, из-за чего они используются очень экономно. В Leonardo таких контактов пять, на больших платах, таких как Mega2560, их намного больше, а в Due все контакты поддерживают возможность прерывания.

Далее рассказывается, как работают аппаратные прерывания. Чтобы опробовать представленный пример, вам понадобятся дополнительная макетная плата, кнопка, сопротивление на 1 кОм и несколько соединительных проводов.

На рис. 3.1 изображена собранная схема. Через сопротивление на контакт D2 подается напряжение HIGH, пока кнопка не будет нажата, в этот момент произойдет заземление контакта D2 и уровень напряжения на нем упадет до LOW.

Загрузите в плату Arduino следующий скетч:

// sketch 03_01_interrupts

int ledPin = 13;

pinMode(ledPin, OUTPUT);

void stuffHapenned()

digitalWrite(ledPin, HIGH);

Рис. 3.1. Электрическая схема для испытания прерываний

Помимо настройки контакта LED на работу в режиме цифрового выхода функция setup с помощью еще одной строки связывает функцию с прерыванием. Теперь в ответ на каждое прерывание автоматически будет вызываться эта функция. Рассмотрим эту строку внимательнее, потому что аргументы вызываемой здесь функции выглядят несколько необычно:

attachInterrupt(0, stuffHapenned, FALLING);

Первый аргумент - 0 - это номер прерывания. Было бы понятнее, если бы номер прерывания совпадал с номером контакта, но это не так. В Arduino Uno прерывание 0 связано с контактом D2, а прерывание 1 - с контактом D3. Ситуация становится еще более запутанной из-за того, что в других моделях Arduino эти прерывания связаны с другими контактами, а кроме того, в Arduino Due нужно указывать номер контакта. На плате Arduino Due с прерываниями связаны все контакты.

Я еще вернусь к этой проблеме, а пока перейдем ко второму аргументу. Этот аргумент - stuffHappened - представляет имя функции, которая должна вызываться для обработки прерывания. Данная функция определена далее в скетче. К таким функциям, их называют подпрограммами обработки прерываний (Interrupt Service Routine, ISR), предъявляются особые требования. Они не могут иметь параметров и ничего не должны возвращать. В этом есть определенный смысл: даже при том что они вызываются в разных местах в скетче, нет ни одной строки кода, осуществляющей прямой вызов ISR, поэтому нет никакой возможности передать им параметры или получить возвращаемое значение.

Последний параметр функции, attachInterrupt - это константа, в данном случае FALLING. Она означает, что подпрограмма обработки прерывания будет вызываться только при изменении напряжения на контакте D2 с уровня HIGH до уровня LOW (то есть при падении - falling), что происходит в момент нажатия кнопки.

Обратите внимание на отсутствие какого-либо кода в функции loop. В общем случае эта функция может содержать код, выполняющийся, пока не произошло прерывание. Сама подпрограмма обработки прерываний просто включает светодиод L.

Когда вы будете экспериментировать, после сброса Arduino светодиод L должен погаснуть. А после нажатия на кнопку - сразу зажечься и оставаться зажженным до следующего сброса.

Поэкспериментировав, попробуйте изменить последний аргумент в вызове attachInterrupt на RISING и выгрузите измененный скетч. После перезапуска Arduino светодиод должен оставаться погашенным, потому что напряжение на контакте хотя и имеет уровень HIGH, но с момента перезапуска оставалось на этом уровне. До этого момента напряжение на контакте не падало до уровня LOW, чтобы потом подняться (rising) до уровня HIGH.

После нажатия и удержания кнопки в нажатом состоянии светодиод должен оставаться погашенным, пока вы ее не отпустите. Отпускание кнопки вызовет прерывание, связанное с контактом D2, потому что, пока кнопка удерживалась нажатой, уровень напряжения на контакте был равен LOW, а после отпускания поднялся до HIGH.

Если во время опробования выяснится, что происходящее у вас не соответствует описанию, приведенному ранее, это, скорее всего, обусловлено эффектом дребезга контактов в кнопке. Этот эффект вызывается тем, что кнопка не обеспечивает четкий переход между состояниями «включено»/«выключено», вместо этого в момент нажатия происходит многократный переход между этими состояниями, пока не зафиксируется состояние «включено». Попробуйте нажимать кнопку энергичнее, это должно помочь получить четкий переход между состояниями без эффекта дребезга.

Другой способ опробовать этот вариант скетча - нажать кнопку и, удерживая ее, нажать и отпустить кнопку сброса Reset на плате Arduino. Затем, когда скетч запустится, отпустить кнопку на макетной плате, и светодиод L загорится.

Контакты с поддержкой прерываний

Вернемся теперь к проблеме именования прерываний. В табл. 3.1 перечислены наиболее распространенные модели плат Arduino и приведено соответствие номеров прерываний и контактов в них.

Таблица 3.1. Контакты с поддержкой прерываний в разных моделях Arduino

Модель Номер прерывания Примечания
0 1 2 3 4 5
Uno D2 D3 - - - -
Leonardo D3 D2 D0 D1 D7 - Действительно, по сравнению с Uno первые два прерывания назначены разным контактам
Mega2560 D2 D3 D21 D20 D19 D18
Due - - - - - - Вместо номеров прерываний функции attachInterrupt следует передавать номера контактов

Смена контактов первых двух прерываний в Uno и Leonardo создает ловушку, в которую легко попасть. В модели Due вместо номеров прерываний функции attachInterrupt следует передавать номера контактов, что выглядит более логично.

Режимы прерываний

Режимы прерываний RISING (по положительному перепаду) и FALLING (по отрицательному перепаду), использовавшиеся в предыдущем примере, чаще всего используются на практике. Однако существует еще несколько режимов. Эти режимы перечислены и описаны в табл. 3.2.

Таблица 3.2. Режимы прерываний

Режим Действие Описание
LOW Прерывание генерируется при уровне напряжения LOW В этом режиме подпрограмма обработки прерываний будет вызываться постоянно, пока на контакте сохраняется низкий уровень напряжения
RISING Прерывание генерируется при положительном перепаде напряжения, с уровня LOW до уровня HIGH -
FALLING Прерывание генерируется при отрицательном перепаде напряжения, с уровня HIGH до уровня LOW -
HIGH Прерывание генерируется при уровне напряжения HIGH Этот режим поддерживается только в модели Arduino Due и, подобно режиму LOW, редко используется на практике

Включение внутреннего импеданса

В схеме в предыдущем примере использовалось внешнее «подтягивающее» сопротивление. Однако на практике сигналы, вызывающие прерывания, часто заводятся с цифровых выходов датчиков, и в этом случае нет необходимости использовать «подтягивающее» сопротивление.

Но если роль датчика играет кнопка, подключенная точно так же, как макетная плата на рис. 3.1, есть возможность избавиться от сопротивления, включив внутреннее «подтягивающее» сопротивление с номиналом около 40 кОм. Для этого нужно явно настроить режим INPUT_PULLUP для контакта, связанного с прерыванием, как показано в строке, выделенной жирным шрифтом:

pinMode(ledPin, OUTPUT);

pinMode(2, INPUT_PULLUP);

attachInterrupt(0, stuffHapenned, FALLING);

Подпрограммы обработки прерываний

Иногда может показаться, что возможность обрабатывать прерывания, пока выполняется функция loop, дает простой способ обработки событий, таких как нажатия клавиш. Но в действительности накладываются очень жесткие ограничения на то, что можно или нельзя делать в подпрограммах обработки прерываний.

Подпрограммы обработки прерываний должны быть короткими и быстрыми настолько, насколько это возможно. Если во время работы подпрограммы обработки прерываний возникнет другое прерывание, эта подпрограмма не будет прервана, а полученный сигнал будет просто проигнорирован. Это, например, означает, что, если прерывания используются для измерения частоты, вы можете получить неверное значение.

Кроме того, пока выполняется подпрограмма обработки прерываний, код в функции loop простаивает.

На время обработки прерывания автоматически отключаются. Такое решение предохраняет от путаницы между подпрограммами, прерывающими друг друга, но имеет нежелательные побочные эффекты. Функция delay использует таймеры и прерывания, поэтому она не будет работать в подпрограммах обработки прерываний. То же относится к функции millis. Попытка использовать millis для получения числа миллисекунд, прошедших с момента последнего сброса платы, чтобы таким способом выполнить задержку, не приведет к успеху, так как она будет возвращать одно и то же значение, пока подпрограмма обработки прерываний не завершится. Однако вы можете использовать функцию delayMicroseconds, которая не использует прерываний.

Прерывания используются также во взаимодействиях через последовательные порты, поэтому не пытайтесь использовать Serial.print или функции чтения из последовательного порта. Впрочем, вы можете попробовать, и иногда они даже будут работать, но не ждите от такой связи высокой надежности.

Оперативные переменные

Так как подпрограмма обработки прерываний не может иметь параметров и не может ничего возвращать, нужен какой-то способ передачи информации между ней и остальной программой. Обычно для этого ­используются глобальные переменные, как показано в следующем примере:

// sketch 03_02_interrupt_flash

int ledPin = 13;

volatile boolean flashFast = false;

pinMode(ledPin, OUTPUT);

attachInterrupt(0, stuffHapenned, FALLING);

int period = 1000;

if (flashFast) period = 100;

digitalWrite(ledPin, HIGH);

digitalWrite(ledPin, LOW);

void stuffHapenned()

flashFast = ! flashFast;

В этом скетче функция loop использует глобальную переменную flashFast, чтобы определить период задержки. Подпрограмма обработки изменяет значение этой переменной между true и false.

Обратите внимание на то, что в объявление переменной flashFast включено слово volatile. Вы можете успешно разрабатывать скетч и без специ­фикатора volatile, но он совершенно необходим, потому что в отсутствие этого спецификатора компилятор C может генерировать машинный код, кэширующий значение переменной в регистре для увеличения производительности. Если, как в данном случае, кэширующий код будет прерван, он может не заметить изменения значения переменной.

В заключение о подпрограммах обработки прерываний

Когда будете писать подпрограммы обработки прерываний, помните следующие правила.

Подпрограммы должны действовать быстро.

Для передачи данных между подпрограммой обработки прерываний и остальной программой должны использоваться переменные, объявленные со спецификатором volatile.

Не используйте delay, но можете использовать delayMicroseconds.

Не ожидайте высокой надежности взаимодействий через последовательные порты.

Не ожидайте, что значение, возвращаемое функцией millis, изменится.

Разрешение и запрет прерываний

По умолчанию прерывания в скетчах разрешены и, как упоминалось ранее, автоматически запрещаются на время работы подпрограммы обработки прерываний. Однако есть возможность явно запрещать и разрешать прерывания в программном коде, вызывая функции noInterrupts и interrupts. Эти функции не имеют параметров, и первая из них запрещает прерывания, а вторая - разрешает.

Явное управление может понадобиться, чтобы исключить возможность прерывания фрагмента кода, например, выводящего последовательность данных или генерирующего последовательность импульсов и точно выдерживающего временные интервалы с помощью функции delayMicroseconds.

Прерывания от таймера

Вызов подпрограмм обработки прерываний можно организовать не только по внешним событиям, но и по внутренним событиям изменения времени. Такая возможность особенно полезна, когда требуется выполнять некоторые операции через определенные интервалы времени.

Библиотека TimerOne упрощает настройку прерываний от таймера. Ее можно найти и загрузить по адресу http://playground.arduino.cc/Code/Timer1 .

Следующий пример показывает, как с помощью TimerOne сгенерировать последовательность импульсов прямоугольной формы с частотой 1 кГц. Если в вашем распоряжении имеется осциллограф или мультиметр с возможностью измерения частоты, подключите его к контакту 12, чтобы увидеть сигнал (рис. 3.2).

Рис. 3.2. Последовательность прямоугольных импульсов, сгенерированная с помощью таймера

// sketch_03_03_1kHz

#include

int outputPin = 12;

volatile int output = LOW;

pinMode(12, OUTPUT);

Timer1.initialize(500);

Timer1.attachInterrupt(toggleOutput);

void toggleOutput()

digitalWrite(outputPin, output);

output = ! output;

То же самое можно было бы реализовать с помощью delay, но применение прерываний от таймера позволяет организовать выполнение любых других операций внутри loop. Кроме того, использование функции delay не позволит добиться высокой точности, потому что время, необходимое на изменение уровня напряжения на контакте, не будет учитываться в величине задержки.

ПРИМЕЧАНИЕ

Все ограничения для подпрограмм обработки внешних прерываний, о которых рассказывалось ранее, распространяются также на подпрограммы обработки прерываний от таймера.

Представленным способом можно установить любой интервал между прерываниями в диапазоне от 1 до 8 388 480 мкс, то есть примерно до 8,4 с. Величина интервала передается функции initialize в микросекундах.

Библиотека TimerOne дает возможность также использовать таймер для генерирования сигналов с широтно-импульсной модуляцией (Pulse Width Modulation, PWM) на контактах 9 и 10 платы. Это может показаться излишеством, потому что то же самое делает функция analogWrite, но применение прерываний позволяет обеспечить более точное управление сигналом PWM. В частности, используя такой подход, можно организовать измерение протяженности положительного импульса в диапазоне 0…1023 вместо 0…255 в функции analogWrite. Кроме того, при использовании analogWrite частота следования импульсов в сигнале PWM составляет 500 Гц, а с помощью TimerOne можно эту частоту увеличить или уменьшить.

Чтобы сгенерировать сигнал PWM с применением библиотеки TimerOne, используйте функцию Timer1.pwm, как показано в следующем примере:

// sketch_03_04_pwm

#include

pinMode(9, OUTPUT);

pinMode(10, OUTPUT);

Timer1.initialize(1000);

Timer1.pwm(9, 512);

Timer1.pwm(10, 255);

Здесь выбран период следования импульсов, равный 1000 мкс, то есть частота сигнала PWM составляет 1 кГц. На рис. 3.3 показана форма сигналов на контактах 10 (вверху ) и 9 (внизу ).

Рис. 3.3. Широтно-импульсный сигнал с частотой 1 кГц, сгенерированный с помощью TimerOne

Ради интереса давайте посмотрим, до какой степени можно увеличить частоту сигнала PWM. Если уменьшить длительность периода до 10, частота сигнала PWM должна увеличиться до 100 кГц. Форма сигналов, полученных с этими параметрами, показана на рис. 3.4.

Несмотря на наличие существенных переходных искажений, что вполне ожидаемо, протяженность положительных импульсов все же остается довольно близкой к 25 и 50% соответственно.

Рис. 3.4. Широтно-импульсный сигнал с частотой 100 кГц, сгенерированный с помощью TimerOne

В заключение

Прерывания, которые иногда кажутся идеальным решением для непростых проектов, могут осложнить отладку кода и не всегда оказываются лучшим способом решения трудных задач. Тщательно обдумайте возможные решения, прежде чем переходить к их использованию. В главе 14 мы познакомимся с другим приемом преодоления сложностей, связанных с тем, что Arduino не может выполнять более одной задачи одновременно.

Мы еще вернемся к прерываниям в главе 5, где рассмотрим возможность их применения для уменьшения потребления электроэнергии платой Arduino за счет периодического перевода ее в режим энергосбережения, и в главе 13, где прерывания будут применяться для увеличения точности обработки цифровых сигналов.

В следующей главе мы познакомимся с приемами увеличения производительности Arduino до максимума.



Понравилась статья? Поделитесь ей